Skip to main content
Log in

Cryptococcus laurentii Extracellular Biopolymer Production for Application in Wound Management

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cryptococcus laurentii growth and extracellular polysaccharide (EPS) production in bioreactor were studied. Biomass yield 14.3 g/L and EPS synthesis 4.3 g/L in 144 h of submerged cultivation were achieved. EPS synthesis and cell growth had different optima. For EPS formation, pH 3, 25 °C and low aeration (1 % < pO2 < 10 %) were advantageous, while cell growth optimum was at pH 6, 20 °C, and high aeration (pO2 > 30 %). As medium pH changed from pH 3 to pH 6, glucuronic acid (GluAc) content in EPS increased, while galactose, xylose, and glucose decreased. Twenty-five degrees Celsius was optimal for GluAc containing polysaccharide synthesis, while lower temperature (15 °C) increased glucose content in EPS. Aeration intensity and time of cultivation had little effect on EPS composition. Molecular mass distribution of raw C. laurentii EPS was determined by SEC-MALS as 1.352. The row EPS was composed of acidic glucuronoxylomannan for more than 85 %. In the in vivo experiments, EPS significantly improved excisional wound healing in healthy rats. The results suggest that C. laurentii EPS is a promising biotechnological product and an advanced material for application in wound management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Perry, M., & Webb, A. (1982). Canadian Journal of Biochemistry, 60, 124–130.

    Article  CAS  Google Scholar 

  2. Kiho, T., Tsujimura, Y., Sakushima, M., Usui, S., & Ukai, S. (1994). Yakugaku Zasshi, 114, 308–315.

    Article  CAS  Google Scholar 

  3. Chen, B. (2010). Carbohydrate Polymers, 81, 420–424.

    Article  CAS  Google Scholar 

  4. Hyun-Jung, P., Hyun, S. S., Yong, H. A., Kyung, S. K., Kum, J. P., Woong, K. C., et al. (2012). Behavioural Brain Research, 229, 82–90.

    Article  Google Scholar 

  5. Hu, Z., Baozhen, T., Wei, L., Shuaishuai, Z., Chunxu, C., Yan, Z., & Weisheng, Z. (2012). Bioresource Technology, 116, 526–528.

    Article  Google Scholar 

  6. Abercrombie, M. J., Jones, J. K. N., Lock, M. V., Perry, M. B., & Stoodley, R. J. (1960). Canadian Journal of Chemistry, 38, 1617–1624.

    Article  CAS  Google Scholar 

  7. Ankel, H., Ankel, E., & Schutzbach, J. S. (1970). Journal of Biological Chemistry, 245, 3945–3955.

    CAS  Google Scholar 

  8. Kolarova, N., Matulová, M., & Capek, P. (1997). Journal of Carbohydrate Chemistry, 16, 609–623.

    Article  CAS  Google Scholar 

  9. Matulova, M., Kolarova, N., & Capek, P. (2002). Journal of Carbohydrate Chemistry, 21, 521–537.

    Article  CAS  Google Scholar 

  10. Pavlova, K., Rusinova-Videva, S., Kuncheva, M., Kratchanova, M., Gocheva, M., & Dimitrova, S. (2011). Applied Biochemistry and Biotechnology, 163, 1038–1052.

    Article  CAS  Google Scholar 

  11. Anan’eva, E. P. and Vitovskaja, G. A. (1999) Method of heteropolysaccharide producing. RU Patent 000002148648 C1.

  12. Anan’eva, E. P., Vitovskaja, G. A., Burakova, M. A., Efimova, L. S., Karavaeva, A. V., Ryzhenkov, V. E., et al. (1999). Food additive “Krilasorb”. RU Patent 000002177695C2.

  13. Guo, J., Fang, W., Lu, H., Zhu, R., Lu, L., Zheng, X., & Yu, T. (2014). Postharvest Biology and Technology, 88, 72–78.

    Article  CAS  Google Scholar 

  14. Fu, D., & O’Neill, R. A. (1995). Analytical Biochemistry, 227, 377–384.

    Article  CAS  Google Scholar 

  15. Davidson, J. M. (2001). Wounds, 13, 9–23.

    Google Scholar 

  16. DiPietro, L.A., Burns, A.L. (2003) Wound healing methods and protocols. Humana Press.

  17. Donot, F., Fontana, A., Baccou, J. C., & Schorr-Galindo, S. (2012). Carbohydrate Polymers, 87, 951–962.

    Article  CAS  Google Scholar 

  18. Kulicke, W.-M., Lettau, A. I., & Thielking, H. (1997). Carbohydrate Research, 297, 134–143.

    Article  Google Scholar 

  19. Bartek, P., Kolarova, N., & Capek, P. (2001). Chemical Papers, 55, 261–268.

    CAS  Google Scholar 

  20. Bae, J. S., Jang, K. H., & Jin, H. K. (2005). Journal of Veterinary Science, 6, 161–164.

    Google Scholar 

  21. Gao, F., Liu, Y., He, Y., Yang, C., Wang, Y., Shi, X., et al. (2010). Matrix Biology, 29, 107–116.

    Article  CAS  Google Scholar 

  22. Khamlue, R., Naksupan, N., Ounaroon, A., & Saelim, N. (2012). 4th International Conference on Chemical, Biological and Environmental Engineering. IPCBEE vol.43. Singapore: IACSIT Press.

    Google Scholar 

  23. Luo, Y., Diao, H., Xia, S., Dong, L., Chen, J., & Zhang, J. (2010). Journal of Biomedical Materials Research, 94, 193–204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dzianis Smirnou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnou, D., Hrubošová, D., Kulhánek, J. et al. Cryptococcus laurentii Extracellular Biopolymer Production for Application in Wound Management. Appl Biochem Biotechnol 174, 1344–1353 (2014). https://doi.org/10.1007/s12010-014-1105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1105-x

Keywords

Navigation