Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1344–1353 | Cite as

Cryptococcus laurentii Extracellular Biopolymer Production for Application in Wound Management

  • Dzianis SmirnouEmail author
  • Dana Hrubošová
  • Jaromír Kulhánek
  • Karol Švík
  • Lenka Bobková
  • Veronika Moravcová
  • Martin Krčmář
  • Lukáš Franke
  • Vladimír Velebný
Article

Abstract

Cryptococcus laurentii growth and extracellular polysaccharide (EPS) production in bioreactor were studied. Biomass yield 14.3 g/L and EPS synthesis 4.3 g/L in 144 h of submerged cultivation were achieved. EPS synthesis and cell growth had different optima. For EPS formation, pH 3, 25 °C and low aeration (1 % < pO2 < 10 %) were advantageous, while cell growth optimum was at pH 6, 20 °C, and high aeration (pO2 > 30 %). As medium pH changed from pH 3 to pH 6, glucuronic acid (GluAc) content in EPS increased, while galactose, xylose, and glucose decreased. Twenty-five degrees Celsius was optimal for GluAc containing polysaccharide synthesis, while lower temperature (15 °C) increased glucose content in EPS. Aeration intensity and time of cultivation had little effect on EPS composition. Molecular mass distribution of raw C. laurentii EPS was determined by SEC-MALS as 1.352. The row EPS was composed of acidic glucuronoxylomannan for more than 85 %. In the in vivo experiments, EPS significantly improved excisional wound healing in healthy rats. The results suggest that C. laurentii EPS is a promising biotechnological product and an advanced material for application in wound management.

Keywords

Cryptococcus laurentii Submerged cultivation Exopolysaccharide Rat excisional wound healing 

References

  1. 1.
    Perry, M., & Webb, A. (1982). Canadian Journal of Biochemistry, 60, 124–130.CrossRefGoogle Scholar
  2. 2.
    Kiho, T., Tsujimura, Y., Sakushima, M., Usui, S., & Ukai, S. (1994). Yakugaku Zasshi, 114, 308–315.CrossRefGoogle Scholar
  3. 3.
    Chen, B. (2010). Carbohydrate Polymers, 81, 420–424.CrossRefGoogle Scholar
  4. 4.
    Hyun-Jung, P., Hyun, S. S., Yong, H. A., Kyung, S. K., Kum, J. P., Woong, K. C., et al. (2012). Behavioural Brain Research, 229, 82–90.CrossRefGoogle Scholar
  5. 5.
    Hu, Z., Baozhen, T., Wei, L., Shuaishuai, Z., Chunxu, C., Yan, Z., & Weisheng, Z. (2012). Bioresource Technology, 116, 526–528.CrossRefGoogle Scholar
  6. 6.
    Abercrombie, M. J., Jones, J. K. N., Lock, M. V., Perry, M. B., & Stoodley, R. J. (1960). Canadian Journal of Chemistry, 38, 1617–1624.CrossRefGoogle Scholar
  7. 7.
    Ankel, H., Ankel, E., & Schutzbach, J. S. (1970). Journal of Biological Chemistry, 245, 3945–3955.Google Scholar
  8. 8.
    Kolarova, N., Matulová, M., & Capek, P. (1997). Journal of Carbohydrate Chemistry, 16, 609–623.CrossRefGoogle Scholar
  9. 9.
    Matulova, M., Kolarova, N., & Capek, P. (2002). Journal of Carbohydrate Chemistry, 21, 521–537.CrossRefGoogle Scholar
  10. 10.
    Pavlova, K., Rusinova-Videva, S., Kuncheva, M., Kratchanova, M., Gocheva, M., & Dimitrova, S. (2011). Applied Biochemistry and Biotechnology, 163, 1038–1052.CrossRefGoogle Scholar
  11. 11.
    Anan’eva, E. P. and Vitovskaja, G. A. (1999) Method of heteropolysaccharide producing. RU Patent 000002148648 C1.Google Scholar
  12. 12.
    Anan’eva, E. P., Vitovskaja, G. A., Burakova, M. A., Efimova, L. S., Karavaeva, A. V., Ryzhenkov, V. E., et al. (1999). Food additive “Krilasorb”. RU Patent 000002177695C2.Google Scholar
  13. 13.
    Guo, J., Fang, W., Lu, H., Zhu, R., Lu, L., Zheng, X., & Yu, T. (2014). Postharvest Biology and Technology, 88, 72–78.CrossRefGoogle Scholar
  14. 14.
    Fu, D., & O’Neill, R. A. (1995). Analytical Biochemistry, 227, 377–384.CrossRefGoogle Scholar
  15. 15.
    Davidson, J. M. (2001). Wounds, 13, 9–23.Google Scholar
  16. 16.
    DiPietro, L.A., Burns, A.L. (2003) Wound healing methods and protocols. Humana Press.Google Scholar
  17. 17.
    Donot, F., Fontana, A., Baccou, J. C., & Schorr-Galindo, S. (2012). Carbohydrate Polymers, 87, 951–962.CrossRefGoogle Scholar
  18. 18.
    Kulicke, W.-M., Lettau, A. I., & Thielking, H. (1997). Carbohydrate Research, 297, 134–143.CrossRefGoogle Scholar
  19. 19.
    Bartek, P., Kolarova, N., & Capek, P. (2001). Chemical Papers, 55, 261–268.Google Scholar
  20. 20.
    Bae, J. S., Jang, K. H., & Jin, H. K. (2005). Journal of Veterinary Science, 6, 161–164.Google Scholar
  21. 21.
    Gao, F., Liu, Y., He, Y., Yang, C., Wang, Y., Shi, X., et al. (2010). Matrix Biology, 29, 107–116.CrossRefGoogle Scholar
  22. 22.
    Khamlue, R., Naksupan, N., Ounaroon, A., & Saelim, N. (2012). 4th International Conference on Chemical, Biological and Environmental Engineering. IPCBEE vol.43. Singapore: IACSIT Press.Google Scholar
  23. 23.
    Luo, Y., Diao, H., Xia, S., Dong, L., Chen, J., & Zhang, J. (2010). Journal of Biomedical Materials Research, 94, 193–204.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dzianis Smirnou
    • 1
    Email author
  • Dana Hrubošová
    • 2
  • Jaromír Kulhánek
    • 3
  • Karol Švík
    • 3
  • Lenka Bobková
    • 1
  • Veronika Moravcová
    • 3
  • Martin Krčmář
    • 1
  • Lukáš Franke
    • 1
  • Vladimír Velebný
    • 1
  1. 1.Contipro Group s.r.o.Dolní DobroučCzech Republic
  2. 2.Department of Biological and Biochemical Sciences, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic
  3. 3.Contipro Pharma a.s.Dolní DobroučCzech Republic

Personalised recommendations