Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2067–2078 | Cite as

Preparation of Cross-Linked Enzyme Aggregates of Trehalose Synthase via Co-aggregation with Polyethyleneimine

  • Jianfeng Zheng
  • Ying Chen
  • Liwei Yang
  • Mingchun Li
  • Jun ZhangEmail author


Trehalose synthase (TreS) from Meiothermus ruber was co-aggregated with polyethyleneimine (PEI) and precipitated with polyethylene glycol (PEG), followed by cross-linking with glutaraldehyde to obtain TreS-polyethyleneimine cross-linked enzyme aggregates (termed as CLEAs-PEI-PEG). The TreS solution at 0.5 mg mL−1 protein concentration, with PEI at a mass ratio of 1:0.8 (enzyme/PEI, w/w) and 25 % (w/v) PEG concentration were found to be most adequate for the co-aggregation of TreS. CLEAs-PEI-PEG was most active with glutaraldehyde at a mass ratio of 1:0.5 (enzyme/glutaraldehyde, w/w) to cross-link the co-aggregates. The CLEAs-PEI-PEG prepared in this work had an optimum pH of 6.5 and optimum temperature of 60 °C. For lower concentrations of enzyme, using PEI could enhance the cross-linking efficiency of TreS. The thermal stability and pH tolerance of CLEAs-PEI-PEG were significantly improved. Scanning electron microscopy revealed that the main structure of CLEAs-PEI-PEG showed scaffolding morphology which was constituted by structured ball-like particles with a size of 1–2.5 μm in diameter.


Trehalose synthase Polyethyleneimine Co-aggregation Cross-linking 



The current work was supported by the National Natural Science Foundation of China (no. 21076162) and Tianjin Natural Science Foundation (no. 10JCYBJC05000, no. 10JCYBJC09600).


  1. 1.
    Elbein, A. D. (1974). Advances in Carbohydrate Chemistry and Biochemistry, 30, 227–256.CrossRefGoogle Scholar
  2. 2.
    Crowe, J. H., Crowe, L. M., & Chapman, D. (1984). Science, 223, 701–7031.CrossRefGoogle Scholar
  3. 3.
    Richards, A. B., Krakowka, S., Dexter, L. B., Schmid, H., Wolterbeek, A. P. M., Waalkens-Berendsen, D. H., Shigoyuki, A., & Kurimoto, M. (2002). Food and Chemical Toxicology, 40, 871–898.CrossRefGoogle Scholar
  4. 4.
    Ohtake, S., Wang, Y. J., & Pharm, J. (2011). Science, 100, 2020–2053.Google Scholar
  5. 5.
    Schiraldi, C., Di Lernia, I., & De Rosa, M. (2002). Trends in Biotechnology, 20, 420–425.CrossRefGoogle Scholar
  6. 6.
    Nishimoto, T., Nakano, M., Ikegami, S., Chaen, H., Fukuda, S., Sugimoto, T., Kurimoto, M., & Tsujisaka, Y. (1995). Bioscience, Biotechnology, and Biochemistry, 59, 2189–2190.CrossRefGoogle Scholar
  7. 7.
    Liang, J., Huang, R., Huang, Y., Wang, X., Du, L., & Wei, Y. (2013). Journal of Molecular Catalysis B: Enzymatic, 90, 26–32.CrossRefGoogle Scholar
  8. 8.
    Nishimoto, T., Nakada, T., Chaen, H., Fukuda, S., Sugimoto, T., & Kurimoto, M. (1996). Bioscience, Biotechnology, and Biochemistry, 60, 835–839.CrossRefGoogle Scholar
  9. 9.
    Lee, J. H., Lee, K. H., Kim, C. G., Lee, S. Y., Kim, J. G., Park, Y. H., & Chung, S. O. (2005). Applied Microbiology and Biotechnology, 68, 213–219.CrossRefGoogle Scholar
  10. 10.
    Kim, T. K., Jang, J. H., Cho, H. Y., Lee, H. S., & Kim, Y. W. (2010). Food Science and Biotechnology, 19, 565–569.CrossRefGoogle Scholar
  11. 11.
    Zhu, Y. M., Zhang, J., Wei, D. S., Wang, Y. F., Chen, X. Y., Xing, L. J., & Li, M. C. (2008). Bioscience, Biotechnology, and Biochemistry, 72, 2019–2024.CrossRefGoogle Scholar
  12. 12.
    Zhu, Y. M., Wei, D. S., Zhang, J., Wang, Y. F., Xu, H. Y., Xing, L. J., & Li, M. C. (2010). Extremophiles, 14, 1–8.CrossRefGoogle Scholar
  13. 13.
    Cao, L., van Langen, L. M., & Sheldon, R. A. (2003). Current Opinion in Biotechnology, 14, 387–394.CrossRefGoogle Scholar
  14. 14.
    Cho, Y. J., Park, O. J., & Shin, H. J. (2006). Enzyme and Microbial Technology, 39, 108–113.CrossRefGoogle Scholar
  15. 15.
    Wu, T. T., Lin, S. C., & Shaw, J. F. (2011). Process Biochemistry, 46, 1481–1485.CrossRefGoogle Scholar
  16. 16.
    Mateo, C., Palomo, J. M., van Langen, L. M., van Rantwijk, F., & Sheldon, R. A. (2004). Biotechnology and Bioengineering, 86, 273–276.CrossRefGoogle Scholar
  17. 17.
    Sheldon, R. A. (2007). Advanced Synthesis and Catalysis, 349, 1289–1307.CrossRefGoogle Scholar
  18. 18.
    Lopez-Serrano, P., Cao, L., van Rantwijk, F., & Sheldon, R. A. (2002). Biotechnology Letters, 24, 1379–1383.CrossRefGoogle Scholar
  19. 19.
    Cao, L., van Rantwijk, F., & Sheldon, R. A. (2000). Organic Letters, 2, 1361–1364.CrossRefGoogle Scholar
  20. 20.
    Schoevaart, R., Wolbers, M. W., Golubovic, M., Ottens, M., Kieboom, A. P. G., van Rantwijk, F., van der Wielen, L. A. M., & Sheldon, R. A. (2004). Biotechnology and Bioengineering, 87, 754–762.CrossRefGoogle Scholar
  21. 21.
    Wilson, L., Illanes, A., Abian, O., Pessela, B. C. C., Fernández-Lafuente, R., & Guisán, J. M. (2004). Biological Macromolecules, 5, 852–857.Google Scholar
  22. 22.
    Migneault, I., Dartiguenave, C., Bertrand, M., & Waldron, K. C. (2004). Biotechnology Techniques, 37, 790–802.Google Scholar
  23. 23.
    Cui, J. D., Sun, L. M., & Li, L. L. (2013). Applied Biochemistry and Biotechnology, 170, 1827–1837.CrossRefGoogle Scholar
  24. 24.
    Wilson, L., Illanes, A., Soler, O. L., & Henriquez, M. J. (2009). Process Biochemistry, 44, 322–326.CrossRefGoogle Scholar
  25. 25.
    López-Gallego, F., Betancor, L., Hidalgo, A., Alonso, N., Fernandez-Lafuente, R., & Guisan, J. M. (2006). Biological Macromolecules, 6, 1839–1842.Google Scholar
  26. 26.
    Bradford, M. M. (1972). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  27. 27.
    Sakata, M., Matsumoto, K., Obaru, N., Kunitake, M., Mizokami, H., & Hirayama, C. (2003). Related Technology, 26, 231–246.Google Scholar
  28. 28.
    Chen, Y., Xiao, C. P., Chen, X. Y., Yang, L. W., Qi, X., Zheng, J. F., Li, M. C., & Zhang, J. (2014). Journal of Molecular Catalysis B: Enzymatic, 100, 84–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jianfeng Zheng
    • 1
    • 2
  • Ying Chen
    • 1
  • Liwei Yang
    • 1
  • Mingchun Li
    • 2
  • Jun Zhang
    • 1
    Email author
  1. 1.Tianjin Institute of Forestry and PomologyTianjin Academy of Agricultural ScienceTianjinChina
  2. 2.College of Life ScienceNankai UniversityTianjinChina

Personalised recommendations