Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1246–1259 | Cite as

Genome Shuffling of Aspergillus glaucus HGZ-2 for Enhanced Cellulase Production

  • Yuping ZhaoEmail author
  • Changxing Jiang
  • Hupeng Yu
  • Fang Fang
  • Jingzhu Yang


The production of cellulase from Aspergillus glaucus HGZ-2 was improved by using genome shuffling. The starting populations, obtained by UV irradiation, were subjected to recursive protoplast fusion. The optimal conditions for protoplast formation and regeneration were 7 mg/ml snailase and 5 mg/ml cellulase at 34 °C for 3.0 h using 0.7 M NaCl as an osmotic stabilizer. The protoplasts were inactivated under UV for 30 min or heated at 50 °C for 50 min, and a fusant probability of about 100 % was observed. The positive colonies were created by fusing the inactivated protoplasts. The optimal conditions for protoplast fusion were PEG6000 concentration of 35 %, CaCl2 concentration of 0.02 M, and incubation time of 12 min. After two rounds of genome shuffling, one strain (Y) was obtained. Its filter paper cellulase (FPase) and carboxymethyl cellulase (CMCase) activity reached 71 and 70 U/ml, respectively, which were increased by 1.95-fold and 1.72-fold in comparison with that of its ancestor strain. The results indicated that genome shuffling was an efficient means for the improved production of cellulases by A. glaucus HGZ-2.


Genome shuffling Cellulase production Aspergillus glaucus 



This work was financially supported by the Open Research Fund of Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, P.R. China (no. JSBGFC12004), the Jiangsu Key Technology Research and Development Program, P.R. China (no. BE2010357 and no. BE2013375), and Jiangsu University Research Industry Promotion Program, P.R. China (no. JHB2011-58).


  1. 1.
    Jorgensen, H., Morkeberg, A., Krogh, K. B., & Olsson, L. (2005). Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microbial Technology, 36, 42–48.CrossRefGoogle Scholar
  2. 2.
    Kim, K.-H., Brown, K. M., Harris, P. V., Langston, J. A., & Cherry, J. R. (2007). A proteomics strategy to discover β-glucosidases from Aspergillus fumigatus with two-dimensional page in-gel activity assay and tandem mass spectrometry. Journal of Proteome Research, 6, 4749–4757.CrossRefGoogle Scholar
  3. 3.
    Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology Biotechnology, 35, 377–391.CrossRefGoogle Scholar
  4. 4.
    Kaur, B., Oberoi, H., & Chadha, B. (2014). Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain. Bioresource Technology, 156, 100–107.CrossRefGoogle Scholar
  5. 5.
    Zhang, J., Zhong, Y., Zhao, X., & Wang, T. (2010). Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artifical cellobiohydrolase 1 promoter. Bioresource Technology, 101, 9815–9818.CrossRefGoogle Scholar
  6. 6.
    Matkar, K., Chapla, D., Divecha, J., Nighojkar, A., & Madamwar, D. (2013). Production of cellulase by a newly isolated strain of Aspergillus sydowii and its optimization under submerged fermentation. International Biodeterioration & Biodegradation, 78, 24–33.CrossRefGoogle Scholar
  7. 7.
    Zhang, Y.-X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & del Cardayré, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646.CrossRefGoogle Scholar
  8. 8.
    Gong, J., Zheng, H., Wu, Z., Chen, T., & Zhao, X. (2009). Genome shuffling: progress and applications for phenotype improvement. Biotechnology Advances, 27, 996–1005.CrossRefGoogle Scholar
  9. 9.
    Wang, H., Zhang, J., Wang, X., Qi, W., & Dai, Y. (2012). Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii. Biotechnology Letters, 34, 145–151.CrossRefGoogle Scholar
  10. 10.
    Xu, B., Jin, Z., Jin, Q., Li, N., & Cen, P. (2009). Improvement of pristinamycin production by genome shuffling and medium optimization for Streptomyces pristinaespiralis. Biotechnology and Bioprocess Engineering, 14, 175–179.CrossRefGoogle Scholar
  11. 11.
    Yu, G., Hu, Y., Hui, M., Chen, L., Wang, L., Liu, N., Yin, Y., & Zhao, J. (2014). Genome shuffling of Streptomyces roseosporus for improving daptomycin production. Journal of Bioscience and Bioengineering, 172, 2661–2669.Google Scholar
  12. 12.
    Zheng, P., Zhang, K., Yan, Q., Xu, Y., & Sun, Z. (2013). Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. Journal of Industrial Microbiology, 40, 831–840.CrossRefGoogle Scholar
  13. 13.
    Cheng, Y., Song, X., Qin, Y., & Qu, Y. (2009). Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. Journal Pure Applied Microbiology, 107, 1837–1846.CrossRefGoogle Scholar
  14. 14.
    Xu, F., Jin, H., Li, H., Tao, L., Wang, J., Lv, J., & Chen, S. (2012). Genome shuffling of Trichoderma viride for enhanced cellulase production. Annals of Microbiology, 62, 509–515.CrossRefGoogle Scholar
  15. 15.
    Cheng, Y., & Bélanger, R. R. (2000). Protoplast preparation and regeneration from spores of the biocontrol fungus Pseudozyma flocculosa. FEMS Microbiology Letters, 190, 287–291.CrossRefGoogle Scholar
  16. 16.
    Wang, C., Wu, G., Li, Y., Huang, Y., Zhang, F., & Liang, X. (2013). Genome shuffling of Penicillium citrinum for enhanced production of nuclease P1. Applied Biochemistry and Biotechnology, 170, 1533–1545.CrossRefGoogle Scholar
  17. 17.
    Zhu, Y., Zhou, H., Bi, Y., Zhang, W., Chen, G., & Liu, W. (2013). Characterization of a family 5 glycoside hydrolase isolated from the outer membrane of cellulolytic Cytophaga hutchinsonii. Applied Biochemistry and Biotechnology, 97, 3925–3937.Google Scholar
  18. 18.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  19. 19.
    Jiang, X., Geng, A., He, N., & Li, Q. (2011). New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. Journal of Bioscience and Bioengineering, 111, 121–127.CrossRefGoogle Scholar
  20. 20.
    Zhao, J., Li, Y., Zhang, C., Yao, Z., Zhang, L., Bie, X., Lu, F., & Lu, Z. (2012). Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR. Journal of Industrial Microbiology Biotechnology, 39, 889–896.CrossRefGoogle Scholar
  21. 21.
    Yu, L., Pei, X., Lei, T., Wang, Y., & Feng, Y. (2008). Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. Journal of Biotechnology, 134, 154–159.CrossRefGoogle Scholar
  22. 22.
    Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W. P., Ryan, C. M., & del Cardayré, S. (2002). Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnology, 20, 707–712.CrossRefGoogle Scholar
  23. 23.
    Kang, J., Chen, X., Chen, W., Li, M., Fang, Y., Li, D., Ren, Y., & Liu, D. (2011). Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling. Process Biochemistry, 46, 792–795.CrossRefGoogle Scholar
  24. 24.
    Reyes, R. G., Eguchi, F., Iijima, T., & Higaki, M. (1998). Regeneration of protoplasts from hyphal strands of Volvariella volvacea. Journal of Wood Science, 44, 401–407.CrossRefGoogle Scholar
  25. 25.
    Du, J., Qu, Y., Lin, Q., Xu, H., Wu, X., & Long, M. (2006). Screening of high-yield cellulase mutants of Aspergillus glaucus. J Xiamen Univ (Nat Sci), 45, 23–26.Google Scholar
  26. 26.
    Rhee, K.-H., & Davies, J. (2006). Transcription analysis of daptomycin biosynthetic genes in Streptomyces roseosporus. Journal of Bioscience and Bioengineering, 16, 1841–1848.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yuping Zhao
    • 1
    • 2
    • 3
    Email author
  • Changxing Jiang
    • 1
    • 3
  • Hupeng Yu
    • 1
  • Fang Fang
    • 1
  • Jingzhu Yang
    • 1
  1. 1.School of Life Science and Chemical EngineeringHuaiyin Institute of TechnologyHuaianPeople’s Republic of China
  2. 2.Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  3. 3.Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process IntegrationHuaiyin Institute of TechnologyHuaianPeople’s Republic of China

Personalised recommendations