Skip to main content

Advertisement

Log in

All-trans Retinoic Acid Promotes Nerve Cell Differentiation of Yolk Sac-Derived Mesenchymal Stem Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fetal membranes are abundant; the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in human and murine; whereas other cell types and species are dramatically unnoticed. Here, we studied the nature and differentiation potential of yolk sac-derived mesenchymal stem cells from a chicken embryo. In this study, we observed the gene expression of pluripotent markers in yolk sac mesenchymal stem cells (YS-MSCs) and the capacity of YS-MSCs to differentiate into neural-like cells using quantitative RT-PCR, immunocytochemistry, and western blotting. YS-MSCs have a spindle shape and revealed the expression of the MSC-related proteins β-integrin, CD44, CD71, and CD73, but not CD34. YS-MSCs express pluripotent markers such as octamer-binding transcription factor 4 (Oct4) and Nanog at the protein and mRNA levels. QRT-PCR analyses revealed that YS-MSCs expressed nestin. Immunocytochemical and western blotting data showed that the cells expressed Nestin and microtubule-associated protein 2 (Map-2) for neurons, respectively, after induction of neural differentiation. These findings demonstrate the plasticity of YS-MSCs and their potential for use in cellular replacement therapy for neural diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown, W. R., Hubbard, S. J., Tickle, C., & Wilson, S. A. (2003). The chicken as a model for large-scale analysis of vertebrate gene function. Nature reviews. Genetics, 4, 87–98.

    CAS  Google Scholar 

  2. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., & Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–655.

    Article  CAS  Google Scholar 

  3. Croft, A. P., & Przyborski, S. A. (2009). Mesenchymal stem cells expressing neural antigens instruct a neurogenic cell fate on neural stem cells. Experimental Neurology, 216, 329–341.

    Article  CAS  Google Scholar 

  4. Devine, S. M., & Hoffman, R. (2000). Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Current Opinion in Hematology, 7, 358–363.

    Article  CAS  Google Scholar 

  5. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W., & Kemler, R. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. Journal of Embryology and Experimental Morphology, 87, 27–45.

    CAS  Google Scholar 

  6. Favaron, P. O., Mess, A., Will, S. E., Maiorka, P. C., de Oliveira, M. F., & Miglino, M. A. (2014). Yolk sac mesenchymal progenitor cells from new world mice (Necromys lasiurus) with multipotent differential potential. PloS One, 9, e95575.

    Article  Google Scholar 

  7. Hernandez-Pedro, N., Ordonez, G., Ortiz-Plata, A., Palencia-Hernandez, G., Garcia-Ulloa, A. C., Flores-Estrada, D., Sotelo, J., & Arrieta, O. (2008). All-trans retinoic acid induces nerve regeneration and increases serum and nerve contents of neural growth factor in experimental diabetic neuropathy. Translational Research : the Journal of Laboratory and Clinical Medicine, 152, 31–37.

    Article  CAS  Google Scholar 

  8. Huang, H. and Auerbach, R. (1993) Identification and characterization of hematopoietic stem cells from the yolk sac of the early mouse embryo. Proceedings of the National Academy of Sciences of the United States of America, 90, 10110–10114.

  9. Huang, Y., Dai, Z. Q., Ling, S. K., Zhang, H. Y., Wan, Y. M., & Li, Y. H. (2009). Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. Journal of Biomedical Science, 16, 87.

    Article  Google Scholar 

  10. Li, X., Li, H., Bi, J., Chen, Y., Jain, S., & Zhao, Y. (2012). Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons. Biochemical and Biophysical Research Communications, 419, 110–116.

    Article  CAS  Google Scholar 

  11. Maden, M., & Holder, N. (1992). Retinoic acid and development of the central nervous system. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 14, 431–438.

    Article  CAS  Google Scholar 

  12. Misumi, S., Kim, T. S., Jung, C. G., Masuda, T., Urakawa, S., Isobe, Y., Furuyama, F., Nishino, H., & Hida, H. (2008). Enhanced neurogenesis from neural progenitor cells with G1/S-phase cell cycle arrest is mediated by transforming growth factor beta1. The European Journal of Neuroscience, 28, 1049–1059.

    Article  Google Scholar 

  13. Niwa, H., Masui, S., Chambers, I., Smith, A. G., & Miyazaki, J. (2002). Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Molecular and Cellular Biology, 22, 1526–1536.

    Article  CAS  Google Scholar 

  14. Plum, L. A., & Clagett-Dame, M. (1996). All-trans retinoic acid stimulates and maintains neurite outgrowth in nerve growth factor-supported developing chick embryonic sympathetic neurons. Developmental Dynamics : an Official Publication of the American Association of Anatomists, 205, 52–63.

    Article  CAS  Google Scholar 

  15. Tamama, K., Sen, C. K., & Wells, A. (2008). Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway. Stem Cells and Development, 17, 897–908.

    Article  CAS  Google Scholar 

  16. Tashiro, K., Kondo, A., Kawabata, K., Sakurai, H., Sakurai, F., Yamanishi, K., Hayakawa, T., & Mizuguchi, H. (2009). Efficient osteoblast differentiation from mouse bone marrow stromal cells with polylysin-modified adenovirus vectors. Biochemical and Biophysical Research Communications, 379, 127–132.

    Article  CAS  Google Scholar 

  17. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98.

    Article  Google Scholar 

  18. Wang, X. Y., Lan, Y., He, W. Y., Zhang, L., Yao, H. Y., Hou, C. M., Tong, Y., Liu, Y. L., Yang, G., Liu, X. D., Yang, X., Liu, B., & Mao, N. (2008). Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436–2443.

    Article  CAS  Google Scholar 

  19. Wu, K. H., Wu, H. P., Chan, C. K., Hwang, S. M., Peng, C. T. and Chao, Y. H. (2012) The role of mesenchymal stem cells in hematopoietic stem cell transplantation: from bench to bedsides. Cell Transplantation.

Download references

Acknowledgments

This research was supported by the Ministry of Agriculture of China for Transgenic Research Program (2013ZX08009-003-006, 2013ZX08012-002-06), the project National Infrastructure of Animal Germplasm Resources (year 2013) and supported by the Earmarked Fund for Modern Agro-industry Technology Research System (nycytx-40-01).

Conflict of Interests

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijun Guan or Dong Zheng.

Additional information

Yuhua Gao and Chunyu Bai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Bai, C., Wang, K. et al. All-trans Retinoic Acid Promotes Nerve Cell Differentiation of Yolk Sac-Derived Mesenchymal Stem Cells. Appl Biochem Biotechnol 174, 682–692 (2014). https://doi.org/10.1007/s12010-014-1100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1100-2

Keywords

Navigation