Skip to main content
Log in

Stimulation of Neural Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Extremely Low-Frequency Electromagnetic Fields Incorporated with MNPs

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) have been investigated as a new cell-therapeutic solution due to their capacity that could differentiate into neural-like cells. Extremely low-frequency electromagnetic fields (ELF-EMFs) therapy has emerged as a novel technique, using mechanical stimulus to differentiate hBM-MSCs and significantly enhance neuronal differentiation to affect cellular and molecular reactions. Magnetic iron oxide (Fe3O4) nanoparticles (MNPs) have recently achieved widespread use for biomedical applications and polyethylene glycol (PEG)-labeled nanoparticles are used to increase their circulation time, aqueous solubility, biocompatibility, and nonspecific cellular uptake as well as to decrease immunogenicity. Many studies have used MNP-labeled cells for differentiation, but there have been no reports of MNP-labeled neural differentiation combined with EMFs. In this study, synthesized PEG-phospholipid encapsulated magnetite (Fe3O4) nanoparticles are used on hBM-MSCs to improve their intracellular uptake. The PEGylated nanoparticles were exposed to the cells under 50 Hz of EMFs to improve neural differentiation. First, we measured cell viability and intracellular iron content in hBM-MSCs after treatment with MNPs. Analysis was conducted by RT-PCR, and immunohistological analysis using neural cell type-specific genes and antibodies after exposure to 50 Hz electromagnetic fields. These results suggest that electromagnetic fields enhance neural differentiation in hBM-MSCs incorporated with MNPs and would be an effective method for differentiating neural cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barry, F. P., & Murphy, J. M. (2004). Mesenchymal stem cells: clinical applications and biological characterization. International Journal of Biochemistry & Cell Biology, 36(4), 568–584.

    Article  CAS  Google Scholar 

  2. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28(3), 585–596.

    CAS  Google Scholar 

  3. Izadpanah, R., Trygg, C., Patel, B., et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99(5), 1285–1297.

    Article  CAS  Google Scholar 

  4. Pountos, I., & Giannoudis, P. V. (2005). Biology of mesenchymal stem cells. Injury, 36, S8–S12.

    Article  Google Scholar 

  5. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  Google Scholar 

  6. Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276(5309), 71–74.

    Article  CAS  Google Scholar 

  7. Woodbury, D., Schwarz, E. J., Prockop, D. J., et al. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of Neuroscience Research, 61(4), 364–370.

    Article  CAS  Google Scholar 

  8. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164(2), 247–256.

    Article  CAS  Google Scholar 

  9. Lacy-Hulbert, A., Metcalfe, J., & Hesketh, R. (1998). Biological responses to electromagnetic fields. FASEB Journal, 12(6), 395–420.

    CAS  Google Scholar 

  10. Sun, S., Liu, Y., Lipsky, S., et al. (2007). Physical manipulation of calcium oscillations facilitates osteo differentiation of human mesenchymal stem cells. FASEB Journal, 21(7), 1472–1480.

    Article  CAS  Google Scholar 

  11. Sert, C., Mustafa, D., Duz, M. Z., et al. (2002). The preventive effect on bone loss of 50-Hz, 1-mT electromagnetic field in ovariectomized rats. Journal of Bone and Mineral Metabolism, 20(6), 345–349.

    Article  CAS  Google Scholar 

  12. McLeod, K. J., & Rubin, C. T. (1992). The effect of low-frequency electrical fields on osteogenesis. Journal of Bone and Joint Surgery (American), 74(6), 920–929.

    Article  CAS  Google Scholar 

  13. Piacentini, R., Ripoli, C., Mezzogori, D., et al. (2008). Extremely low frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. Journal of Cellular Physiology, 215(1), 129–139.

    Article  CAS  Google Scholar 

  14. Cuccurazzu, B., Leone, L., Podda, M. V., et al. (2010). Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Experimental Neurology, 226(1), 173–182.

    Article  Google Scholar 

  15. Cho, H., Seo, Y. K., Yoon, H. H., et al. (2012). Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields. Biotechnology Progress, 28(5), 1329–1335.

    Article  CAS  Google Scholar 

  16. Lattuada, M., & Hatton, T. A. (2007). Functionalization of monodisperse magnetic nanoparticles. Langmuir, 23(4), 2158–2168.

    Article  CAS  Google Scholar 

  17. Pankhurst, Q. A., Connolly, J., Jones, S. K., et al. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics, 36, R167.

    Article  CAS  Google Scholar 

  18. Xie, J., Xu, C., Kohler, N., et al. (2007). Controlled PEGylation of monodisperse Fe3O4 Nanoparticles for reduced non‐specific uptake by macrophage cells. Advanced Materials, 19, 2163–3166.

    Article  Google Scholar 

  19. Greenwald, R. B., Choe, Y. H., McGuire, J., et al. (2003). Effective drug delivery by PEGylated drug conjugates. Advanced Drug Delivery Reviews, 55(2), 217–250.

    Article  CAS  Google Scholar 

  20. Schäfer, R., Kehlbach, R., Müller, M., et al. (2009). Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability. Cytotherapy, 11(1), 68–78.

    Article  Google Scholar 

  21. Schäfer, R., Bantleon, R., Kehlbach, R., et al. (2010). Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles. BMC Cell Biology, 11, 22.

    Article  Google Scholar 

  22. Shimizu, K., Ito, A., Yoshida, T., et al. (2007). Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 82(2), 471–480.

    Article  Google Scholar 

  23. Qian, D. X., Zhang, H. T., Ma, X., et al. (2010). Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Neurochemical Research, 35(4), 572–579.

    Article  CAS  Google Scholar 

  24. Cho, H., Choi, Y. K., Lee, D. H., et al. (2013). Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord. Biotechnology and Applied Biochemistry, 60(6), 596–602.

    Article  CAS  Google Scholar 

  25. Rivers, F. J., Couillard-Despres, S., Pedre, X., et al. (2006). Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells, 24(10), 2209–2219.

    Article  Google Scholar 

  26. Bahat-Stroomza, B., Barhum, Y., Levy, Y. S., et al. (2009). Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in parkinson’s disease. Journal of Molecular Neuroscience, 39(1–2), 199–210.

    Article  CAS  Google Scholar 

  27. McCaig, C. D., Sangster, L., & Stewart, R. (2000). Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Developmental Dynamics, 217(3), 299–308.

    Article  CAS  Google Scholar 

  28. Sisken, B. F., Walker, J., & Orgel, M. (1993). Prospects on clinical applications of electrical stimulation for nerve regeneration. Journal of Cellular Biochemistry, 51(4), 404–409.

    Article  CAS  Google Scholar 

  29. McCaig, C. D. (1986). Electric fields, contact guidance and the direction of nerve growth. Journal of Embryology & Experimental Morphology, 94, 245–255.

    CAS  Google Scholar 

  30. Kunzmann, A., Andersson, B., Thurnherr, T., et al. (2011). Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta, 1810(3), 361–373.

    Article  CAS  Google Scholar 

  31. Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23(7), 1553–1561.

    Article  CAS  Google Scholar 

  32. Riggio, C., Calatayud, M. P., Hoskins, C., et al. (2012). Poly-l-lysine-coated magnetic nanoparticles as intracellular acutators for neural guidance. International Journal of Nanomedicine, 7, 3155–3166.

    CAS  Google Scholar 

  33. Safford, K. M., Hicok, K. C., Safford, S. D., et al. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 294(2), 371–379.

    Article  CAS  Google Scholar 

  34. Mitchell, K. E., Weiss, M. L., Mitchell, B. M., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21(1), 50–60.

    Article  CAS  Google Scholar 

  35. Tseng, P. Y., Chen, C. J., Sheu, C. C., et al. (2007). Comparison of the efficiencies of three neural induction protocols in human adipose stromal cells. Journal of Veterinary Medical Science, 69(2), 95–102.

    Article  Google Scholar 

  36. Ge, D., Song, K., Guan, S., et al. (2013). Culture and differentiation of rat neural stem/progenitor cells in a three-dimensional collagen scaffold. Applied Biochemistry and Biotechnology, 170(2), 406–419.

    Article  CAS  Google Scholar 

  37. Zhu, X. L., Eibl, O., Scheideler, L., et al. (2006). Characterization of nano hydroxyapatite/collagen surfaces and cellular behaviors. Journal of Biomedical Materials Research, Part A, 79A, 114–127.

    Article  CAS  Google Scholar 

  38. Bock, N., Riminucci, A., Dionigi, C., et al. (2010). A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomaterialia, 6(3), 786–796.

    Article  CAS  Google Scholar 

  39. Badaracco, M. E., Siri, M. V., & Pasquini, J. M. (2010). Oligodendrogenesis: the role of iron. Biofactors, 36(2), 98–102.

    CAS  Google Scholar 

  40. Todorich, B., Pasquini, J. M., Garcia, C. I., et al. (2009). Oligodendrocytes and myelination: the role of iron. Glia, 57(5), 467–478.

    Article  Google Scholar 

  41. Kim, J. A., Lee, N., Kim, B. H., et al. (2011). Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials, 32(11), 2871–2877.

    Article  CAS  Google Scholar 

  42. Curran, J. M., Pu, F., Chen, R., et al. (2011). The use of dynamic surface chemistries to control msc isolation and function. Biomaterials, 32(21), 4753–4760.

    Article  CAS  Google Scholar 

  43. Bito, H., & Takemoto-Kimura, S. (2003). Ca(2+)/CREB/CBP-dependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium, 34(4–5), 425–430.

    Article  CAS  Google Scholar 

  44. Wang, J., Weaver, I. C., Gauthier-Fisher, A., et al. (2010). CBP histone acetyltransferase activity regulates embryonic neural differentiation in the normal and Rubinstein–Taybi syndrome brain. Developmental Cell, 18(1), 114–125.

    Article  CAS  Google Scholar 

  45. Nakagawa, S., Kim, J. E., Lee, R., et al. (2002). Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. Journal of Neuroscience, 22(9), 3673–3682.

    CAS  Google Scholar 

  46. Leone, L., Fusco, S., Mastrodonato, A., et al. (2014). Epigenic modulation of adult hippocampal neurogenesis by extremely low-frequency electromagnetic fields. Molecular Neurobiology, 49(3), 1472–1486.

    Article  CAS  Google Scholar 

  47. Podda, M. V., Leone, L., Barbati, S. A., et al. (2014). Extremely low-frequency electromagnetic fields enhance the survival of newborn neurons in the mouse hippocampus. European Journal of Neuroscience, 39(6), 893–903.

    Article  Google Scholar 

  48. Park, J. E., Seo, Y. K., Yoon, H. H., et al. (2013). Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGRF activation. Neurochemistry International, 62(4), 418–424.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (grant number 2009-0082941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjin Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YK., Lee, D.H., Seo, YK. et al. Stimulation of Neural Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Extremely Low-Frequency Electromagnetic Fields Incorporated with MNPs. Appl Biochem Biotechnol 174, 1233–1245 (2014). https://doi.org/10.1007/s12010-014-1091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1091-z

Keywords

Navigation