Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1260–1271 | Cite as

Evaluation of the Hydrolysis Specificity of Protease from Marine Exiguobacterium sp. SWJS2 via Free Amino Acid Analysis

  • Fenfen Lei
  • Chun Cui
  • Qiangzhong Zhao
  • Dongxiao Sun-Waterhouse
  • Mouming ZhaoEmail author
Article

Abstract

This study evaluates the hydrolysis specificity of newly developed protease from Exiguobacterium sp. SWJS2 (EP) based on the released free amino acid (FAA) during enzymolysis and through comparing with commercially available papain and Alcalase 2.4L. Results showed that EP had great potential in producing hydrolysates with better nutrition and less bitterness. The percentages of essential amino acids in the EP-treated Coilia mystus and soybean protein were 72 and 70 %, respectively. And, corresponding hydrophobic amino acids were 74 and 72 %, respectively (i.e. <60 % for papain- or Alcalase 2.4L-treated samples). The differences in FAA releasing rates between EP and the two commercial proteases suggested that EP could become a new commercial protease that offers different reaction rates and extends protease application scope. Track changes in FAA profiles throughout EP hydrolysis revealed that the release of each amino acid exhibited its distinct regularity as the hydrolysis proceeded, which also varied with the substrate proteins. EP hydrolysis of C. mystus and soybean protein led to greater production rates of Phe, Leu, Val, Ile and Ala, suggesting that EP might have higher preference to these amino acids.

Keywords

Exiguobacterium sp. Protease Specificity Free amino acid Enzymolysis 

Notes

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program) (No. 2012AA092104; 2013AA102201-1) and the Public Science and Technology Research Funds Projects of Ocean (No, 2013418018-7).

References

  1. 1.
    Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31, 1949–1956.CrossRefGoogle Scholar
  2. 2.
    Marsman, C. J. P., Gruppen, H., Van Der Poel, A. F. B., Kwakkel, R. P., Verstegen, M. W. A., & Voragen, A. G. J. (1997). The effect of thermal processing and enzyme treatments of soybean meal on growth performance, ileal nutrient digestibilities, and chyme characteristics in Broiler Chicks. Poultry Science, 76, 864–872.CrossRefGoogle Scholar
  3. 3.
    Wroblewska, B., Karamac, M., Amarowicz, R., Szymkiewicz, A., Troszynska, A., & Kubicka, E. (2004). Immunoreactive properties of peptide fractions of cow whey milk proteins after enzymatic hydrolysis. International Journal of Food Science and Technology, 39, 839–850.CrossRefGoogle Scholar
  4. 4.
    Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48, 430–441.CrossRefGoogle Scholar
  5. 5.
    Hayes, A., Ross, R. P., Fitzgerald, G. F., Hill, C., & Stanton, C. (2006). Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Applied and Environmental Microbiology, 72, 2260–2264.CrossRefGoogle Scholar
  6. 6.
    Chiang, W. D., Tsou, M. J., Tsai, Z. Y., & Tsai, T. C. (2006). Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chemistry, 98, 725–732.CrossRefGoogle Scholar
  7. 7.
    Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y., Kojima, K., & Kuwata, T. (2001). Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin. Biochemical and Biophysical Research Communications, 281, 11–17.CrossRefGoogle Scholar
  8. 8.
    Tavano, O. L. (2013). Protein hydrolysis using proteases: an important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11.CrossRefGoogle Scholar
  9. 9.
    Su, G., Ren, J., Yang, B., Cui, C., & Zhao, M. (2011). Comparison of hydrolysis characteristics on defatted peanut meal proteins between a protease extract from Aspergillus oryzae and commercial proteases. Food Chemistry, 126, 1306–1311.CrossRefGoogle Scholar
  10. 10.
    Chen, C., Chi, Y. J., Zhao, M. Y., & Lv, L. (2012). Purification and identification of antioxidant peptides from egg white protein hydrolysate. Amino Acids, 43, 457–466.CrossRefGoogle Scholar
  11. 11.
    Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15–32.CrossRefGoogle Scholar
  12. 12.
    Wang, J., Xu, A., Wan, Y., & Li, Q. (2013). Purification and characterization of a new metallo-neutral protease for beer brewing from Bacillus amyloliquefaciens SYB-001. Applied Biochemistry and Biotechnology, 170, 2021–2033.CrossRefGoogle Scholar
  13. 13.
    Kumari, K. S. P., Satyavani, Y., & Lakshmi, C. M. V. V. (2012). Production of protease enzyme using various sources. Research Journal of Biotechnology, 7, 250–258.Google Scholar
  14. 14.
    Kasana, R. C., & Yadav, S. K. (2007). Isolation of a psychrotrophic Exiguobacterium sp. SKPB5 (MTCC 7803) and characterization of its alkaline protease. Current Microbiology, 54, 224–229.CrossRefGoogle Scholar
  15. 15.
    Kumar, P. K. A., & Suresh, P. V. (2014). Biodegradation of shrimp biowaste by marine Exiguobacterium sp. CFR26M and concomitant production of extracellular protease and antioxidant materials: production and process optimization by response surface methodology. Marine Biotechnology, 16, 202–218.CrossRefGoogle Scholar
  16. 16.
    Anbu, P., Annadurai, G., & Hur, B. K. (2013). Production of alkaline protease from a newly isolated Exiguobacterium profundum BK-P23 evaluated using the response surface methodology. Biologia, 68, 186–193.CrossRefGoogle Scholar
  17. 17.
    Anbu, P., Hur, B. K., & Lee, C. G. (2013). Isolation and characterization of a novel oxidant- and surfactant-stable extracellular alkaline protease from Exiguobacterium profundum BK-P23. Biotechnology and Applied Biochemistry, 60, 155–161.CrossRefGoogle Scholar
  18. 18.
    Damme, P. V., Vandekerckhove, J., & Gevaert, K. (2008). Disentanglement of protease substrate repertoires. Biological Chemistry, 389, 371–381.Google Scholar
  19. 19.
    Sumantha, A., Larroche, C., & Pandey, A. (2006). Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technology and Biotechnology, 44, 211–220.Google Scholar
  20. 20.
    Nishiwaki, T., & Hayashi, K. (2001). Purification and characterization of an aminopeptidase from the edible basidiomycete Grifola frondosa. Bioscience Biotechnology Biochemistry, 65, 424–427.CrossRefGoogle Scholar
  21. 21.
    Aguirre, L., Garro, M. S., & de Giori, G. S. (2008). Enzymatic hydrolysis of soybean protein using lactic acid bacteria. Food Chemistry, 111, 976–982.CrossRefGoogle Scholar
  22. 22.
    Chalamaiah, M., Dinesh kumar, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review. Food Chemistry, 135, 3020–3038.CrossRefGoogle Scholar
  23. 23.
    Roblet, C., Amiot, J., Lavigne, C., Marette, A., Lessard, M., Jean, J., Ramassamy, C., Moresoli, C., & Bazinet, L. (2012). Screening of in vitro bioactivities of a soy protein hydrolysate separated by hollow fiber and spiral-wound ultrafiltration membranes. Food Research International, 46, 237–249.CrossRefGoogle Scholar
  24. 24.
    Ishibashi, N., Arita, Y., Kanehisa, H., Kouge, K., Okai, H., & Fukui, S. (1987). Bitterness of leucine-containing peptides. Agricultural and Biological Chemistry, 51, 2389–2394.Google Scholar
  25. 25.
    Ishibashi, N., Sadamori, K., Yamamoto, O., Kanehisa, H., Kouge, K., Kikuchi, E., Okai, H., & Fukui, S. (1987). Bitterness of phenylalanine- and tyrosine-containing peptides. Agricultural and Biological Chemistry, 51, 3309–3313.Google Scholar
  26. 26.
    Nishiwaki, T., Yoshimizu, S., Furuta, M., & Hayashi, K. (2002). Debittering of enzymatic hydrolysates using an aminopeptidase from the edible basidiomycete Grifola frondosa. Journal of Bioscience and Bioengineering, 93, 60–63.CrossRefGoogle Scholar
  27. 27.
    Lioe, H. N., Apriyantono, A., Takara, K., Wada, K., Naoki, H., & Yasuda, M. (2004). Low molecular weight compounds responsible for savory taste of Indonesian soy sauce. Journal of Agricultural and Food Chemistry, 52, 5950–5956.CrossRefGoogle Scholar
  28. 28.
    Yang, B., Yang, H., Li, J., Li, Z., & Jiang, Y. (2011). Amino acid composition, molecular weight distribution and antioxidant activity of protein hydrolysates of soy sauce lees. Food Chemistry, 124, 551–555.CrossRefGoogle Scholar
  29. 29.
    Zhang, J., Yao, Y., Ye, X., Fang, Z., Chen, J., Wu, D., Liu, D., & Hu, Y. (2013). Effect of cooking temperatures on protein hydrolysates and sensory quality in crucian carp (Carassius auratus) soup. Journal of Food Science and Technology, 50, 542–548.CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Shi, G., & Zhao, F. (2010). Hydrolysis of casein catalyzed by papain in n-propanol/NaCl two-phase system. Enzyme and Microbial Technology, 46, 438–443.CrossRefGoogle Scholar
  31. 31.
    Adler-Nissen, J. (1986). A review of food protein hydrolysis. In S. Arai (Ed.), Enzymic hydrolysis of food proteins (pp. 435–438). New York: Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fenfen Lei
    • 1
  • Chun Cui
    • 1
  • Qiangzhong Zhao
    • 1
  • Dongxiao Sun-Waterhouse
    • 1
    • 2
  • Mouming Zhao
    • 1
    • 3
    Email author
  1. 1.College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouChina
  2. 2.School of Chemical SciencesThe University of AucklandAucklandNew Zealand
  3. 3.State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations