Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1309–1330 | Cite as

Chitosan-Assisted Immunotherapy for Intervention of Experimental Leishmaniasis via Amphotericin B-Loaded Solid Lipid Nanoparticles

  • Vineet Jain
  • Annie Gupta
  • Vivek K. Pawar
  • Shalini Asthana
  • Anil K. Jaiswal
  • Anuradha Dube
  • Manish K. ChourasiaEmail author
Article

Abstract

Solid lipid nanoparticles (SLNs) have emerged as an excellent substitute over polymeric nanoparticles and, when incorporated with chitosan which activates the macrophage to impart an immune response, produce excellent results to fight against deleterious diseases like leishmaniasis where its parasite diminishes the immunity of the host to induce resistance. Based upon this hypothesis, chitosan-coated SLNs were developed and loaded with amphotericin B (AmB) for immunoadjuvant chemotherapy of Leishmania infection. Both uncoated and chitosan-coated AmB-loaded SLNs (AmB-SLNs) were fabricated using solvent emulsification and evaporation method. The various processes and formulation parameters involved in AmB-SLN preparation were optimized with respect to particle size and stability of the particles. In vitro hemolytic test credited the formulations to be safe when injected in the veins. The cellular uptake analysis demonstrated that the chitosan-coated AmB-SLN was more efficiently internalized into the J774A.1 cells. The in vitro antileishmanial activity revealed their high potency against Leishmania-infected cells in which chitosan-coated AmB-SLNs were distinguishedly efficacious over commercial formulations (AmBisome and Fungizone). An in vitro cytokine estimation study revealed that chitosan-coated AmB-SLNs activated the macrophages to impart a specific immune response through enhanced production of TNF-α and IL-12 with respect to normal control. Furthermore, cytotoxic studies in macrophages and acute toxicity studies in mice evidenced the better safety profile of developed formulation in comparison to marketed formulations. This study indicates that the AmB-SLNs are a safe and efficacious drug delivery system which promises strong competence in antileishmanial chemotherapy and immunotherapy.

Keywords

Amphotericin B Chitosan Leishmaniasis Nanomedicine Immunotherapy Toxicity Cytokine 

Notes

Acknowledgments

The current study was funded by the Council of Industrial and Scientific Research under the network project BIOCERAM and grant from DBT, India [No. BT/PR2007/MED/29/311/2011]. The authors are thankful to Intas Pharma, Ahmedabad for providing the gift sample of AmB. The authors are heartily grateful to SAIF, CDRI, Lucknow for rendering the flow cytometry facility. This is CSIR-CDRI communication 8744.

References

  1. 1.
    Strazzulla, A., Cocuzza, S., Pinzone, M. R., Postorino, M. C., Cosentino, S., Serra, A., Cacopardo, B., & Nunnari, G. (2013). Mucosal leishmaniasis: an underestimated presentation of a neglected disease. BioMed Research International, 2013, 805108.CrossRefGoogle Scholar
  2. 2.
    Awasthi, A., Mathur, R. K., & Saha, B. (2004). Immune response to Leishmania infection. The Indian Journal of Medical Research, 119, 238–258.Google Scholar
  3. 3.
    Murray, H. W., Berman, J. D., Davies, C. R., & Saravia, N. G. (2005). Advances in leishmaniasis. Lancet, 366, 1561–1577.CrossRefGoogle Scholar
  4. 4.
    Van Assche, T., Deschacht, M., da Luz, R. A., Maes, L., & Cos, P. (2011). Leishmania-macrophage interactions: insights into the redox biology. Free Radical Biology, 51, 337–351.CrossRefGoogle Scholar
  5. 5.
    Baginski, M., & Czub, J. (2009). Amphotericin B and its new derivatives—mode of action. Current Drug Metabolism, 10, 459–469.CrossRefGoogle Scholar
  6. 6.
    Odds, F. C., Brown, A. J. P., & Gow, N. A. R. (2003). Antifungal agents: mechanisms of action. Trends in Microbiology, 11, 272–279.CrossRefGoogle Scholar
  7. 7.
    Neumann, A., Baginski, M., & Czub, J. (2010). How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets. Journal of the American Chemical Society, 132, 18266–18272.CrossRefGoogle Scholar
  8. 8.
    Czub, J., Borowski, E., & Baginski, M. (2007). Interactions of amphotericin B derivatives with lipid membranes—a molecular dynamics study. Biochimica et Biophysica, 1768, 2616–2626.CrossRefGoogle Scholar
  9. 9.
    Brajtburg, J., Powderly, W. G., Kobayashi, G. S., & Medoff, G. (1990). Amphotericin B: current understanding of mechanisms of action. Antimicrobial Agents and Chemotherapy, 34, 183–188.CrossRefGoogle Scholar
  10. 10.
    Jain, S., Valvi, P. U., Swarnakar, N. K., & Thanki, K. (2012). Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Molecular Pharmaceutics, 9, 2542–2553.CrossRefGoogle Scholar
  11. 11.
    Pham, T. T. H., Loiseau, P. M., & Barratt, G. (2013). Strategies for the design of orally bioavailable antileishmanial treatments. International Journal of Pharmaceutics, 454, 539–552.CrossRefGoogle Scholar
  12. 12.
    Patel, P. A., & Patravale, V. B. (2011). AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. Journal of Biomedical Nanotechnology, 7, 632–639.CrossRefGoogle Scholar
  13. 13.
    Jain, S. K., Chourasia, M. K., Masuriha, R., Soni, V., Jain, A., Jain, N. K., & Gupta, Y. (2005). Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery. Drug Delivery, 12, 207–215.CrossRefGoogle Scholar
  14. 14.
    Kipp, J. E. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. International Journal of Pharmaceutics, 284, 109–122.CrossRefGoogle Scholar
  15. 15.
    Severino, P., Andreani, T., Macedo, A. S., Fangueiro, J. F., Santana, M. H., Silva, A. M., & Souto, E. B. (2012). Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. Journal of Drug Delivery, 2012, 750891.CrossRefGoogle Scholar
  16. 16.
    Jung, S. H., Lim, D. H., Jung, S. H., Lee, J. E., Jeong, K.-S., Seong, H., & Shin, B. C. (2009). Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. European Journal of Pharmaceutical Sciences, 37, 313–320.CrossRefGoogle Scholar
  17. 17.
    Ma, Z. X., & Zhao, L. H. (2011). Polysaccharides activate signaling pathways of macrophage. Zhejiang Da Xue Xue Bao. Yi Xue Ban, 40, 567–572.Google Scholar
  18. 18.
    Ahsan, F., Rivas, I. P., Khan, M. A., & Torres Suárez, A. I. (2002). Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. Journal of Controlled Release, 79, 29–40.CrossRefGoogle Scholar
  19. 19.
    Li, G., Liu, Z., Liao, B., & Zhong, N. (2009). Induction of Th1-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen Der p 2 for oral vaccination in mice. Cellular & Molecular Immunology, 6, 45–50.CrossRefGoogle Scholar
  20. 20.
    Asthana, S., Jaiswal, A. K., Gupta, P. K., Pawar, V. K., Dube, A., & Chourasia, M. K. (2013). Immunoadjuvant chemotherapy of visceral leishmaniasis in hamsters using amphotericin B encapsulated nano-emulsion template based chitosan nanocapsules. Antimicrobial Agents and Chemotherapy, 57, 1714–1722.CrossRefGoogle Scholar
  21. 21.
    Kunjachan, S., Gupta, S., Dwivedi, A. K., Dube, A., & Chourasia, M. K. (2011). Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. Journal of Microencapsulation, 28, 301–310.CrossRefGoogle Scholar
  22. 22.
    Venkateswarlu, V., & Manjunath, K. (2004). Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. Journal of Controlled Release, 95, 627–638.CrossRefGoogle Scholar
  23. 23.
    Vauthier, C., & Bouchemal, K. (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research, 26, 1025–1058.CrossRefGoogle Scholar
  24. 24.
    Silva, C., Ribeiro, A., Figueiredo, M., Ferreira, D., & Veiga, F. (2005). Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. The AAPS Journal, 7, E903–E913.CrossRefGoogle Scholar
  25. 25.
    Zhang, L., Liu, L., Qian, Y., & Chen, Y. (2008). The effects of cryoprotectants on the freeze-drying of ibuprofen-loaded solid lipid microparticles (SLM). European Journal of Pharmaceutics and Biopharmaceutics, 69, 750–759.CrossRefGoogle Scholar
  26. 26.
    Schwarz, C., Mehnert, W., Lucks, J. S., & Müller, R. H. (1994). Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. Journal of Controlled Release, 30, 83–96.CrossRefGoogle Scholar
  27. 27.
    Chourasia, M. K., Kang, L., & Chan, S. Y. (2011). Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results in Pharma Sciences, 1, 60–67.CrossRefGoogle Scholar
  28. 28.
    Nishi, K. K., Antony, M., Mohanan, P. V., Anilkumar, T. V., Loiseau, P. M., & Jayakrishnan, A. (2007). Amphotericin B-gum arabic conjugates: synthesis, toxicity, bioavailability, and activities against Leishmania and fungi. Pharmaceutical Research, 24, 971–980.CrossRefGoogle Scholar
  29. 29.
    Yang, S. C., Lu, L. F., Cai, Y., Zhu, J. B., Liang, B. W., & Yang, C. Z. (1999). Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. Journal of Controlled Release, 59, 299–307.CrossRefGoogle Scholar
  30. 30.
    Singh, P., Gupta, A., Jaiswal, A., Dube, A., Mishra, S., & Chaurasia, M. K. (2011). Design and development of amphotericin B bearing polycaprolactone microparticles for macrophage targeting. Journal of Biomedical Nanotechnology, 7, 50–51.CrossRefGoogle Scholar
  31. 31.
    Elcicek, S., Bagirova, M., & Allahverdiyev, A. M. (2013). Generation of avirulent Leishmania parasites and induction of nitric oxide production in macrophages by using polyacrylic acid. Experimental Parasitology, 133, 237–242.CrossRefGoogle Scholar
  32. 32.
    Jain, N. K., Mishra, V., & Mehra, N. K. (2013). Targeted drug delivery to macrophages. Expert Opinion on Drug Delivery, 10, 353–367.CrossRefGoogle Scholar
  33. 33.
    Zaharoff, D. A., Rogers, C. J., Hance, K. W., Schlom, J., & Greiner, J. W. (2007). Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 25, 2085–2094.CrossRefGoogle Scholar
  34. 34.
    Brajtburg, J., Elberg, S., Schwartz, D. R., Vertut-Croquin, A., Schlessinger, D., Kobayashi, G. S., & Medoff, G. (1985). Involvement of oxidative damage in erythrocyte lysis induced by amphotericin B. Antimicrobial Agents and Chemotherapy, 27, 172–176.CrossRefGoogle Scholar
  35. 35.
    Takahashi, H., Niidome, Y., Niidome, T., Kaneko, K., Kawasaki, H., & Yamada, S. (2005). Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir, 22, 2–5.CrossRefGoogle Scholar
  36. 36.
    VandeVord, P. J., Matthew, H. W. T., DeSilva, S. P., Mayton, L., Wu, B., & Wooley, P. H. (2002). Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 59, 585–590.CrossRefGoogle Scholar
  37. 37.
    Mori, T., Murakami, M., Okumura, M., Kadosawa, T., Uede, T., & Fujinaga, T. (2005). Mechanism of macrophage activation by chitin derivatives. The Journal of Veterinary Medical Science, 67, 51–56.CrossRefGoogle Scholar
  38. 38.
    Basu, N., Sett, R., & Das, P. K. (1991). Down-regulation of mannose receptors on macrophages after infection with Leishmania donovani. The Biochemical Journal, 277, 451–456.CrossRefGoogle Scholar
  39. 39.
    Legrand, P., Vertut-Doi, A., & Bolard, J. (1996). Comparative internalization and recycling of different amphotericin B formulations by a macrophage-like cell line. The Journal of Antimicrobial Chemotherapy, 37, 519–533.CrossRefGoogle Scholar
  40. 40.
    Privé, C., & Descoteaux, A. (2000). Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages. European Journal of Immunology, 30, 2235–2244.CrossRefGoogle Scholar
  41. 41.
    Yang, Z., Mosser, D. M., & Zhang, X. (2007). Activation of the MAPK, ERK, following Leishmania amazonensis infection of macrophages. The Journal of Immunology, 178, 1077–1085.CrossRefGoogle Scholar
  42. 42.
    Nandan, D., & Reiner, N. E. (1995). Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1. Infection and Immunity, 63, 4495–4500.Google Scholar
  43. 43.
    Chen, C.-L., Wang, Y.-M., Liu, C.-F., & Wang, J.-Y. (2008). The effect of water-soluble chitosan on macrophage activation and the attenuation of mite allergen-induced airway inflammation. Biomaterials, 29, 2173–2182.CrossRefGoogle Scholar
  44. 44.
    Barwicz, J., Christian, S., & Gruda, I. (1992). Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrobial Agents and Chemotherapy, 36, 2310–2315.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vineet Jain
    • 1
  • Annie Gupta
    • 1
  • Vivek K. Pawar
    • 1
  • Shalini Asthana
    • 1
  • Anil K. Jaiswal
    • 2
  • Anuradha Dube
    • 2
  • Manish K. Chourasia
    • 1
    Email author
  1. 1.Pharmaceutics DivisionCSIR-Central Drug Research InstituteLucknowIndia
  2. 2.Parasitology DivisionCSIR-Central Drug Research InstituteLucknowIndia

Personalised recommendations