Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 4, pp 1420–1433 | Cite as

Preparation, Biodistribution, and Scintigraphic Evaluation of 99mTc-Clindamycin: an Infection Imaging Agent

  • Saira HinaEmail author
  • Muhammad Ibrahim Rajoka
  • Samina Roohi
  • Asma Haque
  • Muhammad Qasim
Article

Abstract

Bacterial infection is found to be the cause of death throughout the world. Nuclear medicine imaging with the help of radiopharmaceuticals has great potential for treating infections. In the present work, clindamycin, a lincosamide antibiotic, was labeled with technetium-99 m (~380 MBq). Clindamycin has been proven to be efficient for treating serious infections caused by bacteria such as Staphylococcus aureus. Quality control, characterization, biodistribution, and scintigraphy of radiolabeled clindamycin were done, and labeling efficiency was determined by ascending paper chromatography. More than 95 % labeling efficiency with technetium-99 m (99mTc) was achieved at pH 6–7 while using 2.5–3 μg SnCl2 · H2O as a reducing agent and 100 μg of ligand at room temperature. The characterization of the compound was performed by using electrophoresis, HPLC and shake flask assay. Electrophoresis indicates the neutral behavior of 99mTc-clindamycin. HPLC analysis confirms the single specie of the labeled compound, while shake flask assay confirms high lipophilicity. The biodistribution studies of 99mTc-clindamycin were performed Sprague Dawley rats bearing bacterial infection. Scintigraphy and biodistribution studies showed a high uptake of 99mTc-clindamycin in the liver, heart, lung, and stomach as well as at S. aureus-infected sites in rabbits.

Keywords

99mTc-clindamycin S. aureus Infection Biodistribution Scintigraphy Ascorbic acid 

References

  1. 1.
    Ercan, M. T., Aras, T., & Unsal, I. S. (1992). Nuclear Medicine and Biology, 19, 803–806.Google Scholar
  2. 2.
    Gomes, B. V., Rabiller, G., Iglesias, F., Soroa, V., Tubau, F., Roca, M., & Martin-Comin, J. (2005). Revista Española de Medicina Nuclear, 24, 312–318.CrossRefGoogle Scholar
  3. 3.
    Siaens, R. H., Rennen, H. J., Boerman, O. C., Dierckx, R., & Slegers, G. (2004). Journal of Nuclear Medicine, 45, 2088–2094.Google Scholar
  4. 4.
    Oh, S. J., Ryu, J. S., Shin, J. W., Yoon, E. J., Ha, H. J., Cheon, J. H., & Lee, H. K. (2002). Applied Radiation and Isotopes, 57, 193–200.CrossRefGoogle Scholar
  5. 5.
    Sonmezoglu, K., Sonmezoglu, M., & Halac, M. (2001). Journal of Nuclear Medicine, 42, 567–574.Google Scholar
  6. 6.
    Larikka, M. J., Ahonen, A. K., & Niemela, O. (2002). Nuclear Medicine Communications, 23, 167–170.CrossRefGoogle Scholar
  7. 7.
    Sarda, L., Crémieux, A. C., & Lebellec, Y. (2003). Journal of Nuclear Medicine, 44, 920–926.Google Scholar
  8. 8.
    Appelboom, T., Emery, P., Tant, L., Dumarey, N., & Schoutens, A. (2003). Rheumatology, 42, 1179–1182.CrossRefGoogle Scholar
  9. 9.
    Motaleb, M. A. (2007). Journal of Radioanalytical and Nuclear Chemistry, 272, 95–99.CrossRefGoogle Scholar
  10. 10.
    El Ghany, E. A., El Kolaly, M. T., Amine, A. M., El Sayed, A. S., & Abdel-Gelil, F. (2005). Journal of Radioanalytical and Nuclear Chemistry, 266, 131–139.CrossRefGoogle Scholar
  11. 11.
    Roohi, S., Mushtaq, A., Jehangir, M., & Salman, A. M. (2006). Journal of Radioanalytical and Nuclear Chemistry, 267, 561–566.CrossRefGoogle Scholar
  12. 12.
    Verma, J., Singh, A. K., & Bhatnagar, A. (2005). World Journal of Nuclear Medicine, 4, 35–46.Google Scholar
  13. 13.
    Lupetti, A., Welling, M. M., Mazzi, U., Nibbering, P. H., & Pauwels, E. K. (2002). European Journal of Nuclear Medicine, 29, 674–679.CrossRefGoogle Scholar
  14. 14.
    Roohi, S., Mushtaq, A., & Salman, A. M. (2005). Radiochimica Acta, 93, 415–418.CrossRefGoogle Scholar
  15. 15.
    Bhatnagar, A., Singh, A. K., Singh, T., & Shankar, L. R. (1995). Nuclear Medicine Communications, 16, 1058.CrossRefGoogle Scholar
  16. 16.
    Degirmenci, B., Kilini, O., Cirak, K. A., Capa, G., & Akpinar, O. (1996). Journal of Nuclear Medicine, 37, 233.Google Scholar
  17. 17.
    Lumbrecht, F. Y., Yilmaz, O., Unak, P., Seytigolu, B., Durkan, K., & Baskan, H. (2008). Journal of Radioanalytical and Nuclear Chemistry, 277, 491–494.CrossRefGoogle Scholar
  18. 18.
    El Ghany, E. A., El Kolaly, M. T., Amine, A. M., El Sayed, A. S., & Abdel-Gelil, F. (2005). Journal of Radioanalytical and Nuclear Chemistry, 266, 125–130.CrossRefGoogle Scholar
  19. 19.
    Hal, A. V., Solanki, K. K., Vinjamuri, S., Britton, K. E., & Das, S. S. (1998). Journal of Clinical Pathology, 51, 215–219.CrossRefGoogle Scholar
  20. 20.
    Seyedeh, F. M., Mostafa, E., Seyed, E., Mohammad, H. T., & Farhad, H. H. (2010). Iranian Journal of Nuclear Medicine, 18, 45–5121.Google Scholar
  21. 21.
    Britton, K. E., Vinjamuri, S., Hall, A. V., Solanki, K., Siraj, Q. H., & Bomanji, J. (1997). European Journal Nuclear Medicine, 24, 553–556.Google Scholar
  22. 22.
    Ugur, S. Y., Fatma, Y. L., Perihan, Ü., Fazilet, Z. B., Emin, I. M., & Berkan, C. (2006). Preparation of 99mTc labeled vitamin C (ascorbic acid) and biodistribution in rats. Chemical and Pharmaceutical Bulletin, 54, 1–3.CrossRefGoogle Scholar
  23. 23.
    Laken, V., Boerman, C. J., Oyen, O. C., van de Ven, W. J. G., Meer, J. W. M., & Corstens, F. H. M. (2000). Journal of Nuclear Medicine, 41, 463–469.Google Scholar
  24. 24.
    Oyen, W. J. G., Boerman, O. C., & Corstens, F. H. M. (2001). Journal of Microbiological Methods, 47, 151–157.CrossRefGoogle Scholar
  25. 25.
    Asikoglu, M., Yurt, F., Cagliyan, O., Unak, P., & Ozkilic, H. (2000). Applied Radiations and Isotopes, 53, 411–413.CrossRefGoogle Scholar
  26. 26.
    Winter, D. F., Van, D., Dumont, F., Van, J., Solanki, K., Britton, K., Slegers, G., Dierckx, R. A., & Thierens, H. (2001). European Journal Nuclear Medicine, 28, 570–574.CrossRefGoogle Scholar
  27. 27.
    Das, S. S., & Britton, K. E. (2003). World Journal of Nuclear Medicine, 2, 173–179.Google Scholar
  28. 28.
    Chattopadhyay, S., Ghosh, M., Sett, S., Das, M. K., Chandra, S., Kakali, D., Mishra, M., Sinha, S., Sarkar, B. R., & Ganguly, S. (2012). Applied Radiation and Isotopes, 70, 2384–2387.CrossRefGoogle Scholar
  29. 29.
    Ibrahim, T., El-Tawoosy, M., & Talat, H. M. (2011). International Scholarly Research Network Pharmaceutica, 5, 42.Google Scholar
  30. 30.
    Kleisner, I., Komarek, P., Komarkova, I., & Konopokova, M. (2002). Nuklearmedizin, 22, 441.Google Scholar
  31. 31.
    Rien, H. S., Huub, J. R., Otto, C. B., Rudid, D., & Guido, S. (2004). Journal of Nuclear Medicine, 45, 2088.Google Scholar
  32. 32.
    Imen, E., Wafa, G., Nadia, M. S., & Mouldi, S. (2010). Journal of Nuclear Medicine and Biology, 37, 821–829.CrossRefGoogle Scholar
  33. 33.
    Meral, T., Erean, T., & Isil, S. U. (1992). Journal of Nuclear Medicine and Biology, 19, 802–806.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Saira Hina
    • 1
    Email author
  • Muhammad Ibrahim Rajoka
    • 1
  • Samina Roohi
    • 2
  • Asma Haque
    • 1
  • Muhammad Qasim
    • 1
  1. 1.Department of Bioinformatics and BiotechnologyGovernment College University FaisalabadFaisalabadPakistan
  2. 2.Isotope Production DivisionPINSTECH NiloreIslamabadPakistan

Personalised recommendations