Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 6, pp 2162–2170 | Cite as

Reducing Sugars Production from Corncobs: A Comparative Study of Chemical and Biotechnological Methods

  • Ravichandra PotumarthiEmail author
  • Rama Raju Baadhe
  • Aparna Pisipati
  • Annapurna Jetty
Article

Abstract

Two commonly used chemical pretreatment processes, sulphuric acid, and sodium hydroxide, were tested to provide comparative performance data. A connection between solid to liquid ratio (S/L) and sugars released was observed with an increase in S/L ratio between 0.02 and 0.2. Enzymatic digestibility of 1 M of NaOH-pretreated corncobs were released 210.7 mg ml−1 of sugars. Further, compared with different concentrations of acid pretreatments at 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.5 M concentrations, sodium hydroxide pretreatment of corncob substantially increased accessibility and digestibility of cellulose. Another additional observation made was whole-cell and crude enzymatic hydrolysis of different concentrations of acid and NaOH (0.05, 0.1, 0.25 M)-treated materials released lower amount of sugars compared with the sugars released (310.9 mg ml−1) with whole-cell hydrolysis of 1 M of NaOH-treated corncobs. NaOH-pretreated corncobs contained higher content of sugars and which is more suitable for production of reducing sugars.

Keywords

Bioethanol Corn cobs Fermentable sugars Pretreatment Whole-cell hydrolysis 

Notes

Acknowledgements

Authors are thankful to the director of Indian Institute of Chemical Technology Hyderabad for supporting the research work. One of the authors acknowledges the CSIR, New Delhi for awarding research associate ship to carryout present work.

References

  1. 1.
    Christiansen, R.C. (2013). Craving corn and the cob, Biomass Magazine, January (2009). Available at: http://www.biomassmagazine.com/article.jsp?article_id=2307. Accessed December 31.
  2. 2.
    Gupta, V.K, Potumarthi, R, O’Donovan, A, Kubicek, C.P., Sharma, G.D., Tuohy, M.G. (2013). In "Bioenergy research: advances and applications" Eds. VK Gupta et al., doi: 10.1016/B978-0-444-59561-4.00002-4, Elsevier, The Netherlands.
  3. 3.
    Mekala, N.K., Potumarthi, R., Baadhe, R.R., Gupta, V.K. (2013). In "Bioenergy Research: advances and applications" Eds. VK Gupta et al., doi: 10.1016/B978-0-444-59561-4.00001-2, Elsevier, The Netherlands.
  4. 4.
    Potumarthi, R., Baadhe, R.R., Bhattacharya, S. (2013). In "Biofuel technologies: recent developments", Ed. V.K.Gupta and M. Tuohy, pp 3-27, ISBN 978-3-642-34519-7, Springer, Germany.Google Scholar
  5. 5.
    Kaliyan, N., & Morey, R. V. (2010). Fuel Processing Technology, 91, 559–565.CrossRefGoogle Scholar
  6. 6.
    National corn growers association world corn: unlimited possibilities 2013 metric edition http://www.ncga.com/upload/files/documents/pdf/publications/WorldofCorn_Metric.pdf Accessed January 1, 2014.
  7. 7.
    Potumarthi, R., Baadhe, R. R., & Jetty, A. (2012). Bioresource Technology, 119, 99–104.CrossRefGoogle Scholar
  8. 8.
    Cheng, K. K., Zhang, J. A., Chavez, E., & Li, J. P. (2010). Applied Microbiology and Biotechnology, 87, 411–417.CrossRefGoogle Scholar
  9. 9.
    Qiang, L., Xinglin, J., Yucai, H., Liangzhi, L., Xian, M., & Jianming, Y. (2010). Applied Microbiology and Biotechnology, 87, 117–126.CrossRefGoogle Scholar
  10. 10.
    Garlock, R. J., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). Biotechnology and Biofuels, 2(1), 29.CrossRefGoogle Scholar
  11. 11.
    Yongming, Z., Tae, H. K., Lee, Y. Y., Rongfu, C., & Richard, T. E. (2006). Applied Biochemistry and Biotechnology, 130, 586–598.CrossRefGoogle Scholar
  12. 12.
    Potumarthi, R., Baadhe, R. R., Nayak, P., & Jetty, A. (2013). Bioresource Technology, 128, 113–117.CrossRefGoogle Scholar
  13. 13.
    Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.Google Scholar
  14. 14.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  15. 15.
    Wang, G. S., Lee, J. W., Zhu, J. Y., & Jeffries, T. W. (2011). Applied Biochemistry and Biotechnology, 163, 658–668.CrossRefGoogle Scholar
  16. 16.
    Bai-Yan, C., Jing-Ping, G., Hong-Zhi, L., Ke-Ke, C., & Wen-Xiang, P. (2011). Biomass Bioenergy, 36, 250–257.Google Scholar
  17. 17.
    Chen, M., Xia, L., & Xue, P. (2007). International Biodeterioration & Biodegradation, 59, 85–89.CrossRefGoogle Scholar
  18. 18.
    Fan, L. T., Young-Hyun, L., & Gharpuray, M. M. (1982). Advances in Biochemistry Engineering and Biotechnology, 22, 157–187.Google Scholar
  19. 19.
    Parveen, K., Diane, M. B., Michael, J. D., & Pieter, S. (2009). Industrial and Engineering Chemistry Research, 4, 3713–3729.Google Scholar
  20. 20.
    Zheng, Y., Zhongli, P., & Ruihong, Z. (2009). International Journal of Agriculture and Biology Engineering, 2, 51–68.Google Scholar
  21. 21.
    Jae-Won, L., Rodrigues, R. C. L. B., Kim, H. J., In-Gyu, C., & Jeffries, T. W. (2010). Bioresource Technology, 101, 4379–4385.CrossRefGoogle Scholar
  22. 22.
    Huber, G. W., Iborra, S., & Corma, A. (2006). Chemical Reviews, 106, 4044–4098.CrossRefGoogle Scholar
  23. 23.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  24. 24.
    Baadhe, R. R., Potumarthi, R., & Mekala, N. K. (2014). Bioresource Technology, 162, 213–217.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ravichandra Potumarthi
    • 1
    • 2
    Email author
  • Rama Raju Baadhe
    • 1
    • 3
  • Aparna Pisipati
    • 1
  • Annapurna Jetty
    • 1
  1. 1.Bio Engineering and Environmental Center (BEEC)Indian Institute of Chemical Technology (CSIR)HyderabadIndia
  2. 2.Department of Chemical EngineeringMonash UniversityClaytonAustralia
  3. 3.Department of BiotechnologyNational Institute of Technology WarangalWarangalIndia

Personalised recommendations