Skip to main content
Log in

Production of Xylose from Meranti Wood Sawdust by Dilute Acid Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Xylitol production by bioconversion of xylose can be economically interesting if the raw material can be recovered from a cheap lignocellulosic biomass (LCB). Meranti wood sawdust (MWS) is a renewable and low-cost LCB that can be used as a promising and economic source of xylose, a starting raw material for the manufacture of several specialty chemicals, especially xylitol. This study aimed to optimize the hydrolysis process of MWS and to determine the influence of temperature, H2SO4 concentration, and residence time on xylose release and on by-product formation (glucose, arabinose, acetic acid, furfural, hydroxymethylfurfural (HMF), and lignin degradation products (LDPs)). Batch hydrolysis was conducted under various operating conditions, and response surface methodology was adopted to achieve the highest xylose yield. Xylose production was highly affected by temperature, acid concentration, and residence time. The optimum temperature, acid concentration, and time were determined to be 124 °C, 3.26 %, and 80 min, respectively. Under these optimum conditions, xylose yield and selectivity were attained at 90.6 % and 4.05 g/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arvela, P. M., Salmi, T., Holmbom, B., Willför, S., & Murzin, D. Y. (2011). Chemical Reviews, 111, 5638–5666.

    Article  Google Scholar 

  2. Parajó, J. C., Domínguez, H., & Domínguez, J. M. (1996). Food Chemistry, 57(4), 531–535.

    Article  Google Scholar 

  3. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48(8), 3713–3729.

    Article  CAS  Google Scholar 

  4. Rafiqul, I. S. M., & Sakinah, A. M. M. (2013). Food Reviews International, 29(2), 127–156.

    Article  CAS  Google Scholar 

  5. Thomas, S., Paul, S. A., Pothan, L. A., & Deepa, B. (2011). In S. Kalia, B. S. Kaith, & I. Kaur (Eds.), Cellulose fibers: bio- and nano-polymer composites: green chemistry and technology (pp. 3–42). New York: Springer.

    Chapter  Google Scholar 

  6. Zhang, D., Ong, Y. L., Li, Z., & Wu, J. C. (2012). Chemical Engineering Journal, 181–182, 636–642.

    Article  Google Scholar 

  7. Rafiqul, I. S. M., & Sakinah, A. M. M. (2012). Chemical Engineering Science, 71, 431–437.

    Article  CAS  Google Scholar 

  8. Balat, M., Balat, H., & Öz, C. (2008). Progress in Energy and Combustion Science, 34, 551–573.

    Article  CAS  Google Scholar 

  9. Brienzo, M., Siqueira, A. F., & Milagres, A. M. F. (2009). Biochemical Engineering Journal, 46, 199–204.

    Article  CAS  Google Scholar 

  10. Téllez-Luis, S. J., Ramírez, J. A., & Vázquez, M. (2002). Journal of Food Engineering, 52, 285–291.

    Article  Google Scholar 

  11. Mussatto, S. I., & Roberto, I. C. (2005). Journal of the Science of Food and Agriculture, 85, 2453–2460.

    Article  CAS  Google Scholar 

  12. Canettieri, E. V., Rocha, G. J. M., Carvalho, J. A., Jr., & Silva, J. B. A. (2007). Bioresource Technology, 98, 422–428.

    Article  CAS  Google Scholar 

  13. Martín, J. F. G., Sánchez, S., & Cuevas, M. (2013). Renewable Energy, 51, 382–387.

    Article  Google Scholar 

  14. Rafiqul, I. S. M., & Sakinah, A. M. M. (2012). Chemical Engineering Research and Design, 90, 1307–1312.

    Article  CAS  Google Scholar 

  15. Swati, G., Haldar, S., Ganguly, A., & Chatterjee, P. K. (2013). Chemical Engineering Journal, 229, 111–117.

    Article  CAS  Google Scholar 

  16. Deutschmann, R., & Dekker, R. F. H. (2012). Biotechnology Advances, 30, 1627–1640.

    Article  CAS  Google Scholar 

  17. Graham, H. D. (1992). Journal of Agricultural and Food Chemistry, 40, 801–805.

    Article  CAS  Google Scholar 

  18. Montgomery, D. C. (2001). Design and analysis of experiments (5th ed., pp. 427–450). New York: John Wiley & Sons.

    Google Scholar 

  19. Han, J. S., & Rowell, J. S. (1997). In R. M. Rowell, R. A. Young, & J. K. Rowell (Eds.), Paper and composites from agro-based resources (pp. 83–134). New York: CRC Lewis Publishers.

    Google Scholar 

  20. Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Energy and Fuels, 20, 848–889.

    Article  CAS  Google Scholar 

  21. Sinağ, A., Gülbay, S., Uskan, B., & Güllü, M. (2009). Journal of Supercritical Fluids, 50, 121–127.

    Article  Google Scholar 

  22. Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., & Gírio, F. M. (2004). Bioresource Technology, 91, 93–100.

    Article  CAS  Google Scholar 

  23. Silva, S. P. M., Morais, A. R. C., & Łukasik, R. B. (2014). Green Chemistry, 16, 238–246.

    Article  Google Scholar 

  24. García, J. F., Sánchez, S., Bravo, V., Rigal, L., & Cuevas, M. (2008). Collection of Czechoslovak Chemical Communications, 73, 637–648.

    Article  Google Scholar 

  25. Rasmussen, H., Sørensen, H. R., & Meyer, A. S. (2014). Carbohydrate Research, 385, 45–57.

    Article  CAS  Google Scholar 

  26. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., & Braun, R. (2002). Applied Biochemistry and Biotechnology, 98–100, 49–58.

    Article  Google Scholar 

  27. Parajó, J. C., Domínguez, H., & Domínguez, J. M. (1998). Bioresource Technology, 66, 25–40.

    Article  Google Scholar 

  28. Martín, C., & Jonssön, L. J. (2003). Enzyme and Microbial Technology, 32, 386–395.

    Article  Google Scholar 

  29. Wang, L., Yang, M., Fan, X., Zhu, X., Xu, T., & Yuan, Q. (2011). Process Biochemistry, 46, 1619–1626.

    Article  CAS  Google Scholar 

  30. Martín, J. F. G., Cuevas, M., Bravo, V., & Sánchez, S. (2010). Renewable Energy, 35, 1602–1608.

    Article  Google Scholar 

  31. Fialová, A., Boschke, E., & Bley, T. (2004). International Biodeterioration & Biodegradation, 54, 69–76.

    Article  Google Scholar 

  32. Yan, J., Jianping, W., Hongmeia, L., Suliang, Y., & Zongding, H. (2005). Biochemical Engineering Journal, 24, 243–247.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universiti Malaysia Pahang (UMP) and to the Ministry of Higher Education, Malaysia, for the financial support (MTUN-COE Research Grant No. RDU 121205) in order to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. M. Sakinah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiqul, I.S.M., Sakinah, A.M.M. & Karim, M.R. Production of Xylose from Meranti Wood Sawdust by Dilute Acid Hydrolysis. Appl Biochem Biotechnol 174, 542–555 (2014). https://doi.org/10.1007/s12010-014-1059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1059-z

Keywords

Navigation