Skip to main content
Log in

Expression Analysis of Rice Pathogenesis-related Proteins Involved in Stress Response and Endophytic Colonization Properties of gfp-tagged Bacillus subtilis CB-R05

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus subtilis CB-R05, possessing antagonistic effects against several fungal pathogens, is a diazotrophic plant growth-promoting bacteria marked with the green fluorescent protein (gfp) gene. To confirm the expression level of the pathogenesis-related (PR) proteins in rice inoculated with CB-R05, the expressions of four pathogenesis-related (PR) proteins (PR2, PR6, PR15, and PR16) were examined in the rice leaves treated with wounding stress over a time period. The PR proteins were generally more strongly expressed in the rice leaves inoculated with CB-R05 compared with the untreated control. The marked gfp-tagged B. subtilis CB-R05 strain was inoculated onto the rice seedlings under axenic conditions. Under the confocal laser scanning microscope (CLSM), the gfp-tagged CB-R05 bacterial cells were observed to penetrate the rhizoplane, especially in the elongation and differentiation zones of the rice roots, and colonize the root intracellularly. The bacteria, 24 h after the gfp-tagged CB-R05 inoculation, were seen to penetrate into the cell wall, cortex, xylem, and concentrate mainly in the vascular bundle. Numerous bacteria were observed within the intercellular spaces, root cortical cells, and xylem vessels. Over time, these bacteria dispersed to the lateral root junctions and propagated slowly from the roots to the stems and leaves. The B. subtilis CB-R05 population in the rice root rhizosphere was also monitored. These results show a very widespread colonization of the B. subtilis CB-R05 in the rice rhizosphere. Further attempts are under way to investigate the competition between the CB-R05 bacteria and the fungal pathogen in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collinge, D. B., & Slusarenko, A. J. (1987). Plant Molecular Biology, 9, 389–401.

    Article  CAS  Google Scholar 

  2. Linthorst, H. J. M. (1991). Critical Reviews in Plant Science, 10, 123–150.

    Article  CAS  Google Scholar 

  3. Van Loon, L.C. (1999). In: Datta SK & Muthukrishnan S (eds) Pathogenesis-related proteins in plants 1-19 CRC Press, Boca Raton, FL.

  4. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., & Yamaguchi-shinozaki, K. (2006). Current Opinion in Plant Biology, 9, 436–442.

    Article  Google Scholar 

  5. Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Annual Review of Phytopathology, 44, 135–162.

    Article  Google Scholar 

  6. Ryals, J. A., Neuenshwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Plant Cell, 8, 1809–1819.

    Article  CAS  Google Scholar 

  7. Kim, S. T., Yu, S., Kang, Y. H., Kim, S. G., Kim, J. Y., Kim, S. H., et al. (2008). Plant Cell Reports, 27, 593–603.

    Article  CAS  Google Scholar 

  8. Hashimoto, M., Kisseleva, L., Sawa, S., Furukawa, T., Komatsu, S., & Koshiba, T. (2004). Plant and Cell Physiology, 45, 550–559.

    Article  CAS  Google Scholar 

  9. Dilworth, M. J. (1974). Annual Review of Plant Physiology, 25, 81–114.

    Article  CAS  Google Scholar 

  10. Sachdev, D., Agarwal, V., Verma, P., Shouche, Y., Dhakephalkar, P., & Chopade, B. (2009). Internet Journal of Microbiology. doi:10.5580/21a7.

    Google Scholar 

  11. Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Journal of Soil Science and Plant Nutrition, 10, 293–319.

    Article  Google Scholar 

  12. Bhattacharyya, P. N., & Jha, D. K. (2012). World Journal of Microbiology and Biotechnology, 28, 1327–1350.

    Article  CAS  Google Scholar 

  13. Gururani, M. A., Upadhyaya, C. P., Baskar, V., Venkatesh, J., Nookaraju, A., & Park, S. W. (2013). Journal of Plant Growth Regulation, 32, 245–258.

    Article  CAS  Google Scholar 

  14. Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., & Bochow, H. (2002). Microbiology, 148, 2097–2109.

    CAS  Google Scholar 

  15. Gupta, A., Saxena, A. K., Gopal, M., & Tilak, K. V. B. R. (1998). Microbiological Research, 153, 113–117.

    Article  Google Scholar 

  16. El-Banna, N., & Winkelmann, G. (1998). Journal of Applied Microbiology, 85, 69–78.

    Article  CAS  Google Scholar 

  17. Baron, C., & Zambryski, P. C. (1995). Trends in Biotechnology, 13, 356–362.

    Article  CAS  Google Scholar 

  18. Reinhold-Hurek, B., & Hurek, T. (1998). Trends in Microbiology, 6, 139–144.

    Article  CAS  Google Scholar 

  19. Triplett, E. W. (1996). Plant and Soil, 186, 29–38.

    Article  CAS  Google Scholar 

  20. Bajwa, R., Abuarghub, S., & Read, D. J. (1985). New Phytologist, 101, 469–486.

    Article  CAS  Google Scholar 

  21. Timmusk, S., & Wagner, E. G. H. (1999). Molecular Plant-Microbe Interactions, 12, 951–959.

    Article  CAS  Google Scholar 

  22. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., et al. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 4927–4932.

    Article  CAS  Google Scholar 

  23. Kuklinsky-Sobral, J., Araujo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A., et al. (2004). Environmental Microbiology, 6, 1244–1251.

    Article  CAS  Google Scholar 

  24. Lugtenberg, B., & Kamilova, F. (2009). Annual Review of Microbiology, 63, 541–556.

    Article  CAS  Google Scholar 

  25. Duffy, B. K., & Weller, D. M. (1996). Journal of Phytopathology, 144, 11–12.

    Article  Google Scholar 

  26. Cavaglieri, L., Orlando, J., & Rodriguez, M. I. (2005). Research in Microbiology, 156, 748–754.

    Article  CAS  Google Scholar 

  27. Zhang, Z. H., Tian, W., Liu, D. Y., Liu, Y. C., Shen, Q. R., & Shen, B. (2010). Plasmid, 64, 200–203.

    Article  CAS  Google Scholar 

  28. Ramos, C., Molbak, L., & Molin, S. (2000). Applied and Environmental Microbiology, 66, 801–809.

    Article  CAS  Google Scholar 

  29. Timmusk, S., Grantcharova, N., & Wagner, E. G. H. (2005). Applied and Environmental Microbiology, 71, 7292–7300.

    Article  CAS  Google Scholar 

  30. von der Weid, I., Artursson, V., Seldin, L., & Jansson, J. K. (2005). World Journal of Microbiology and Biotechnology, 12, 1591–1597.

    Article  Google Scholar 

  31. Liu, X. M., Ahou, H. X., & Chen, S. F. (2006). Current Microbiology, 52, 186–190.

    Article  CAS  Google Scholar 

  32. Njoloma, J., Tanaka, K., Shimizu, T., Nishiguchi, T., Zakria, M., Akashi, R., et al. (2006). Biology and Fertility of Soils, 43, 137–143.

    Article  Google Scholar 

  33. Zhang, N., Wu, K., He, X., Li, S. Q., Zhang, Z. H., et al. (2011). Plant and Soil, 344, 87–97.

    Article  CAS  Google Scholar 

  34. Chelius, M. K., & Triplett, E. W. (2000). Applied and Environmental Microbiology, 66, 783–787.

    Article  CAS  Google Scholar 

  35. Ramos, H. J., Roncato-Maccari, L. D., Souza, E. M., Soares-Ramos, J. R., Hungria, M., & Pedrosa, F. O. (2002). Journal of Biotechnology, 97, 243–252.

    Article  CAS  Google Scholar 

  36. James, E. K. (2000). Field Crops Research, 65, 197–209.

    Article  Google Scholar 

  37. Reinhold-Hurek, B., & Hurek, T. (1998). Critical Reviews in Plant Sciences, 17, 29–54.

    Article  Google Scholar 

  38. Ji, S. H., Gururani, M. A., & Chun, S. C. (2014). Microbiological Research, 169, 83–98.

    Article  CAS  Google Scholar 

  39. Gan, Q., Bai, H., Zhao, X. F., Tao, Y., Zeng, H. P., Han, Y. N., et al. (2011). Journal of Integrative Plant Biology, 53, 300–311.

    Article  CAS  Google Scholar 

  40. Singh, A., Sahi, C., & Grover, A. (2009). Gene, 428, 9–19.

    Article  CAS  Google Scholar 

  41. Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., et al. (2007). Nucleic Acids Research, 35, 883–887.

    Article  Google Scholar 

  42. Park, C. H., Kim, S., Park, J. Y., Ahn, I. P., Jwa, N. S., Im, K. H., et al. (2004). Molecules and Cells, 17, 144–150.

    CAS  Google Scholar 

  43. Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Me’traux, J. P., et al. (2001). European Journal of Plant Pathology, 107, 29–37.

    Article  CAS  Google Scholar 

  44. Si-Ammour, A., Mauch-Mani, B., & Mauch, F. (2003). Molecular Plant Pathology, 4, 237–248.

    Article  CAS  Google Scholar 

  45. Brigidi, P., De Rossi, E., Riccard, G., & Matteuzzi, D. (1991). Biotechnology Techniques, 5, 5–8.

    Article  Google Scholar 

  46. Hoagland, D. R., & Arnon, D. I. (1950). California Agricultural Experiment Station Circular, 347, 1–32.

    Google Scholar 

  47. Hou, M., Xu, W., Bai, H., Liu, Y., Li, L., Liu, L., et al. (2012). Plant Cell Reports, 31, 895–904.

    Article  CAS  Google Scholar 

  48. Mitsuhara, I., Iwal, T., Seo, S., Yanagawa, Y., Kawahigasi, H., Hirose, S., et al. (2008). Molecular Genetics and Genomics, 279, 415–427.

    Article  CAS  Google Scholar 

  49. Nakazaki, T., Tsukiyama, T., Okumoto, Y., Kageyama, D., Naito, K., Inouye, K., et al. (2006). Genome, 49, 619–630.

    Article  CAS  Google Scholar 

  50. Tombolini, R., van der Gaag, D. J., Gerhardson, B., & Jansson, J. K. (1999). Applied and Environmental Biotechnology, 65, 3674–3680.

    CAS  Google Scholar 

  51. Walker, R., Rossall, S., & Asher, M. J. C. (2002). Journal of Applied Microbiology, 92, 228–237.

    Article  Google Scholar 

  52. Sevilla, M., Burris, R. H., Gunapala, N., & Kennedy, C. (2001). Molecular Plant Microbe Interactions, 4, 358–366.

    Article  Google Scholar 

  53. Bloemberg, G. V., Wijifijes, A. H. M., Lamers, G. E. M., Stuurman, N., & Lugtenberg, B. J. J. (2000). Molecular Plant Microbe Interactions, 13, 1170–1176.

    Article  CAS  Google Scholar 

  54. Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Applied and Environmental Microbiology, 71, 2951–4959.

    Google Scholar 

  55. Cao, Y., Ling, N., Yang, X. M., Chen, L. H., & Shen, Q. R. (2011). Biology and Fertility of Soils, 47, 495–506.

    Article  CAS  Google Scholar 

  56. Liu, Y., Chen, S. F., & Li, J. L. (2003). Acta Botanica Sinica, 45, 748–752.

    Google Scholar 

  57. Li, S., Zhang, N., Zhang, Z., Luo, J., Shen, B., Zhang, R., et al. (2013). Biology and Fertility of Soils, 49, 295–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Chul Chun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Growth rates of wild type (CB-R05) and gfp-tagged CB-R05 (GFP + CB-R05-ECE2 strain) bacterial strains in a time period of 0 to 80 h. (JPEG 58 kb)

Supplementary Figure 2

CLSM images showing colonization of gfp-tagged CB-R05 roots of rice variety Ilpum at 24 hours after inoculation with gfp-tagged CB-R05 grown in hydroponic system. After 24 h, the bacteria colonization was similar to the soil culture system, B. subtilis CB-R05 bacterial cells were mostly distributed on the vascular cylinder (elongation zone) (B,F), root apex (division zone) (A,C,E), root cap (D) and root hair zone of roots. The gfp-tagged CB-R05 bacteria were densely distributed in the stele cells of the elongation zone than the cortex cells. These bacteria also colonized in the epidermis cells. (JPEG 182 kb)

Supplementary Figure 3

CLSM images showing colonization of gfp-tagged CB-R05 roots of rice variety Ilpum at 5 days after inoculation with gfp-tagged CB-R05 grown in soil system by seed drenching method. The gfp-tagged CB-R05 bacteria colonized predominantly in elongation zones of the roots (A,C) and root tips (B.D). (JPEG 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S.H., Gururani, M.A. & Chun, SC. Expression Analysis of Rice Pathogenesis-related Proteins Involved in Stress Response and Endophytic Colonization Properties of gfp-tagged Bacillus subtilis CB-R05. Appl Biochem Biotechnol 174, 231–241 (2014). https://doi.org/10.1007/s12010-014-1047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1047-3

Keywords

Navigation