Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1104–1114 | Cite as

Highly Sensitive Potassium-Doped Polypyrrole/Carbon Nanotube-Based Enzyme Field Effect Transistor (ENFET) for Cholesterol Detection

  • Md. Abdul BarikEmail author
  • Manoj Kumar Sarma
  • C. R. Sarkar
  • Jiten Ch. Dutta


Highly sensitive potassium (K)-doped carbon nanotube (CNT) and polypyrrole (PPy) nanocomposite membrane-based enzyme field effect transistor (ENFET) has been fabricated on indium tin oxide (ITO) for detection of cholesterol. P-type graphene has been deposited as substrate on ITO glass electrochemically. N-type graphene has been deposited in source and drain regions. Zirconium dioxide (ZrO2) has been deposited on the channel region as gate insulator. K/PPy/CNT composite has been deposited as sensing membrane on the top of ZrO2 layer; 1 μl of cholesterol oxidase (ChOx) has been immobilized on K/PPy/CNT membrane via physical adsorption technique. The response of K/PPy/CNT/FET has been studied using Agilent 3458A digital multimeter in presence of phosphate buffer saline (PBS) of 50 mM, pH 7.0 and 0.9 % NaCl contained in a glass pot. During measurement, 20 μl cholesterol solutions (0.5 to 25 mM) were poured into the pot through micropipette each time. It has been found that K/PPy/CNT/FET has linearly varied from 0.5 to 20 mM. The sensitivity of this FET has been found to be ~400 μA/mM/mm2 with regression coefficient (r) ~ 0.998. The proposed ENFET has response time of 1 s and stability up to 6 months. The experiment has been repeated 10 times, and only 2.0 % output variation has been observed. The limit of detection (LoD) and Michaelis-Menten constant (K m) were found to be ~1.4 and 2.5 mM, respectively. The results obtained in this work show negligible interference (3.7 %) with uric acid, glucose and urea.


Carbon nanotube Cholesterol oxidase Enzyme field effect transistor Electrochemical deposition Potassium Graphene and zirconium dioxide 



The authors thank the Council of Scientific and Industrial Research, India, for the award of Senior Research Fellowship to A. Barik (File No. 9/1099(0001)/2013-EMR-I). The authors are also thankful to Tezpur University and the University of Science and Technology, Meghalaya, for providing the facilities in the laboratory.


  1. 1.
    Baynes, J. W., & Dominiczak, M. (2005). Medical biochemistry (2nd ed.). Mosby Ltd: Elsevier.Google Scholar
  2. 2.
    White, A., Handler, P., Smith, E. L., Hill, R. L., & Lehman, I. R. (1987). Principles of biochemistry (6th ed.). New York: McGraw-Hill Book.Google Scholar
  3. 3.
    Ahmed, R., Tripathy, N., & Hanh, Y. B. (2013). High-performance cholesterol sensor based on the solution-gated field effect transistor fabricated with ZnO nanorods. Biosensors and Bioelectronics, 45, 181–186.CrossRefGoogle Scholar
  4. 4.
    Arya, S. K., Dutta, M., & Malhotra, B. D. (2008). Recent advances in cholesterol biosensor. Bioelectronics & Biosensors, 23(7), 1083–1100.CrossRefGoogle Scholar
  5. 5.
    Nauck, M., Graziani, M. S., Bruton, D., et al. (1997). Multicenter evaluation of a homogeneous assay for HDL-cholesterol without sample pretreatment. Clinical Chemistry, 43, 1622–1629.Google Scholar
  6. 6.
    Umar, A., Rahman, M. M., Vassem, M., & Hahn, Y. B. (2009). Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications, 11(1), 118–121.CrossRefGoogle Scholar
  7. 7.
    Motonaka, J., & Faultner, L. R. (1993). Determination of cholesterol and cholesterol ester with novel enzyme microsensors. Analytical Chemistry, 65(22), 3258–3261.CrossRefGoogle Scholar
  8. 8.
    Barik, A., Solanki, P. R., Kaushik, A., et al. (2010). Polyaniline–carboxymethyl cellulose nanocomposite for cholesterol detection. Nanoscience and Nanotechnology, 10, 1–10.CrossRefGoogle Scholar
  9. 9.
    Dhand, C., Arya, S. K., Datta, M., et al. (2008). Polyaniline–carbon nanotube composite film for cholesterol biosensor. Analytical Biochemistry, 383, 194–199.CrossRefGoogle Scholar
  10. 10.
    Janata, J., & Josowicz, M. (2002). Conducting polymers in electronic chemical sensors. Nature materials, 2(1), 19–24.CrossRefGoogle Scholar
  11. 11.
    Dutta, J.C. (2012). Ion sensitive field effect transistor for applications in bioelectronic sensors: a research review. IEEE conference publication. doi:  10.1109/NCCISP.2012.6189704 DOI: 10.1109/NCCISP.2012.6189704#blank, 185 – 191.
  12. 12.
    Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, 17, 70–71.CrossRefGoogle Scholar
  13. 13.
    Bergveld, P. (1972). Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Transactions on Biomedical Engineering, 19(5), 342–451.CrossRefGoogle Scholar
  14. 14.
    Matsuo, T., & Wise, K. D. (1974). An integrated field effect electrode for biopotential recording. EEE Transactions on Biomedical Engineering BME, 21, 485–487.CrossRefGoogle Scholar
  15. 15.
    Bergveld, P. (2003). ISFET, theory and practice. Sensors and Actuators B, 88, 1–20.CrossRefGoogle Scholar
  16. 16.
    Yuqing, M., Jianguo, G., & Jianrong, C. (2003). Ion sensitive field effect transducer-based biosensors. Biotechnology Advances, 21, 527–534.CrossRefGoogle Scholar
  17. 17.
    Ishige, Y., Shimoda, M., & Kamahari, M. (2009). Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Biosensors and Bioelectronics, 24, 1096–1102.CrossRefGoogle Scholar
  18. 18.
    Sahoo, R., & Mishro, R. R. (2009). Simulations of carbon nanotube field effect transistors. International Journal of Electronic Engineering Research, 1, 117–125.Google Scholar
  19. 19.
    Javey, A., Kim, H., Brink, M., et al. (2002). High-κ dielectrics for advanced carbon nanotube transistors and logic gates. Nature Materials, 1, 241–246.CrossRefGoogle Scholar
  20. 20.
    Javey, A., Guo, J., Farmer, D. B., et al. (2004). Carbon nanotube field-effect transistors with integrated ohmic contacts and high-K gate dielectrics. Nano Letters, 4, 447–450.CrossRefGoogle Scholar
  21. 21.
    Dong, Z., Wejinya, U. C., & Chalamalasetty, S. N. S. (2012). Development of CNT-ISFET based pH sensing system using atomic force microscopy. Sensors and Actuators, A: Physical, 173, 293–301.CrossRefGoogle Scholar
  22. 22.
    Chin, S. K., Seath, D., Lam, K. T., et al. (2010). Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Transaction on Electron Devices., 57, 3144–3152.CrossRefGoogle Scholar
  23. 23.
    Neto, A. H. C., Guinea, F., Peres, N. M. R., et al. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81, 1,109–163.Google Scholar
  24. 24.
    Stain, M. R., Unluer, D., & Ghosh, A. (2009). Graphene devices. Interconnect and Circuits Challenges and Opportunities. IEEE, 69–72.Google Scholar
  25. 25.
    Choudhury, M. R., Yoon, Y., Guo, J., et al. (2011). Graphene nanoribbon FETs: technology exploration for performance and reliability. IEEE Transaction on Nanotechnology, 10, 727–736.CrossRefGoogle Scholar
  26. 26.
    Chen, Z., Lin, Y. M., Rooks, M. J., et al. (2007). Graphene nano-ribbon electronics. Physica E, 40, 228–232.CrossRefGoogle Scholar
  27. 27.
    Lee, R. S., Kim, H. J., Fischer, J. E., et al. (1997). Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 387, 255–257.CrossRefGoogle Scholar
  28. 28.
    Wang, Z., Liu, J., Liang, Q., et al. (2002). Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst, 127, 653–658.CrossRefGoogle Scholar
  29. 29.
    Guo, M., Chen, J., Li, J., et al. (2004). Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis, 16, 1992–1998.CrossRefGoogle Scholar
  30. 30.
    Raicopol, M., Prună, A., Damian, C., et al. (2013). Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Research Letters, 316, 1–8.Google Scholar
  31. 31.
    Mathur, R. B., Pande, S., Singh, B. P., et al. (2008). Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polymer Composites. doi: 10.1002/pc.20449.Google Scholar
  32. 32.
    Du, C., & Pan, N. (2006). High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology, 17, 5314–5318.CrossRefGoogle Scholar
  33. 33.
    Guo, B., Fang, L., Zhang, B., et al. (2011). Graphene doping: a review. Insciences Journal, 1(2), 80–89.CrossRefGoogle Scholar
  34. 34.
    Gregory, S. D., Gabriella, L., Fang, L., et al. (2010). Ex situ vapor phase boron doping of silicon nanowires using BBr3. Nanoscale, 2, 1165–1170.CrossRefGoogle Scholar
  35. 35.
    Hiroshi, S., & Kioshi, I. (2009). Gas flow sputtering: versatile process for the growth of nanopillars, nanoparticles and epitaxial thin films. Journal of Magnetism and Magnetic Materials, 321, 872–875.CrossRefGoogle Scholar
  36. 36.
    Antti, R., & Mikko, R. (2002). Reaction mechanism studies on the zirconium chloride-water atomic layer deposition process. Journal of Materials Chemistry, 12, 1484–1489.CrossRefGoogle Scholar
  37. 37.
    Javey, A., Tu, R., Farmer, D. B., et al. (2005). High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Letters, 5, 345–348.CrossRefGoogle Scholar
  38. 38.
    Norouzi, P., Faridbod, F., Esfahani, N. E., et al. (2010). Cholesterol biosensor based on MWCNTs-MnO2 nanoparticles using FFT continuous cyclic voltammetry. International Journal of Electrochemical Science, 5, 1008–1017.Google Scholar
  39. 39.
    Schisterman, E. F., Moysich, K. B., England, L. J., et al. (2003). Estimation of the correlation coefficient using the Bayesian approach and its applications for epidemiologic research. BMC Medical Research Methodology. doi: 10.1186/1471-2288-3-5.Google Scholar
  40. 40.
    George, W. B. (1982). Standard deviation, standard error. American Journal Diseases Children, 136, 937–941.CrossRefGoogle Scholar
  41. 41.
    Ruecha, N., Rangkupan, R., Rodthongkum, N., et al. (2014). Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosensors and Bioelectronics, 52, 13–19.CrossRefGoogle Scholar
  42. 42.
    Ali, M. A., Srivastava, S., Solanki, P. R., et al. (2012). Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Applied Physics Letters, 101(084105), 1–5.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Md. Abdul Barik
    • 1
    • 2
    Email author
  • Manoj Kumar Sarma
    • 1
    • 3
  • C. R. Sarkar
    • 2
  • Jiten Ch. Dutta
    • 1
  1. 1.Department of Electronics and Communication EngineeringTezpur UniversityTezpurIndia
  2. 2.Department of ElectronicsUniversity of Science and TechnologyShillong MeghalayaIndia
  3. 3.Department of PhysicsDarrang CollegeTezpurIndia

Personalised recommendations