Skip to main content
Log in

Highly Sensitive Potassium-Doped Polypyrrole/Carbon Nanotube-Based Enzyme Field Effect Transistor (ENFET) for Cholesterol Detection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Highly sensitive potassium (K)-doped carbon nanotube (CNT) and polypyrrole (PPy) nanocomposite membrane-based enzyme field effect transistor (ENFET) has been fabricated on indium tin oxide (ITO) for detection of cholesterol. P-type graphene has been deposited as substrate on ITO glass electrochemically. N-type graphene has been deposited in source and drain regions. Zirconium dioxide (ZrO2) has been deposited on the channel region as gate insulator. K/PPy/CNT composite has been deposited as sensing membrane on the top of ZrO2 layer; 1 μl of cholesterol oxidase (ChOx) has been immobilized on K/PPy/CNT membrane via physical adsorption technique. The response of K/PPy/CNT/FET has been studied using Agilent 3458A digital multimeter in presence of phosphate buffer saline (PBS) of 50 mM, pH 7.0 and 0.9 % NaCl contained in a glass pot. During measurement, 20 μl cholesterol solutions (0.5 to 25 mM) were poured into the pot through micropipette each time. It has been found that K/PPy/CNT/FET has linearly varied from 0.5 to 20 mM. The sensitivity of this FET has been found to be ~400 μA/mM/mm2 with regression coefficient (r) ~ 0.998. The proposed ENFET has response time of 1 s and stability up to 6 months. The experiment has been repeated 10 times, and only 2.0 % output variation has been observed. The limit of detection (LoD) and Michaelis-Menten constant (K m) were found to be ~1.4 and 2.5 mM, respectively. The results obtained in this work show negligible interference (3.7 %) with uric acid, glucose and urea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baynes, J. W., & Dominiczak, M. (2005). Medical biochemistry (2nd ed.). Mosby Ltd: Elsevier.

    Google Scholar 

  2. White, A., Handler, P., Smith, E. L., Hill, R. L., & Lehman, I. R. (1987). Principles of biochemistry (6th ed.). New York: McGraw-Hill Book.

    Google Scholar 

  3. Ahmed, R., Tripathy, N., & Hanh, Y. B. (2013). High-performance cholesterol sensor based on the solution-gated field effect transistor fabricated with ZnO nanorods. Biosensors and Bioelectronics, 45, 181–186.

    Article  Google Scholar 

  4. Arya, S. K., Dutta, M., & Malhotra, B. D. (2008). Recent advances in cholesterol biosensor. Bioelectronics & Biosensors, 23(7), 1083–1100.

    Article  CAS  Google Scholar 

  5. Nauck, M., Graziani, M. S., Bruton, D., et al. (1997). Multicenter evaluation of a homogeneous assay for HDL-cholesterol without sample pretreatment. Clinical Chemistry, 43, 1622–1629.

    CAS  Google Scholar 

  6. Umar, A., Rahman, M. M., Vassem, M., & Hahn, Y. B. (2009). Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications, 11(1), 118–121.

    Article  CAS  Google Scholar 

  7. Motonaka, J., & Faultner, L. R. (1993). Determination of cholesterol and cholesterol ester with novel enzyme microsensors. Analytical Chemistry, 65(22), 3258–3261.

    Article  CAS  Google Scholar 

  8. Barik, A., Solanki, P. R., Kaushik, A., et al. (2010). Polyaniline–carboxymethyl cellulose nanocomposite for cholesterol detection. Nanoscience and Nanotechnology, 10, 1–10.

    Article  Google Scholar 

  9. Dhand, C., Arya, S. K., Datta, M., et al. (2008). Polyaniline–carbon nanotube composite film for cholesterol biosensor. Analytical Biochemistry, 383, 194–199.

    Article  CAS  Google Scholar 

  10. Janata, J., & Josowicz, M. (2002). Conducting polymers in electronic chemical sensors. Nature materials, 2(1), 19–24.

    Article  Google Scholar 

  11. Dutta, J.C. (2012). Ion sensitive field effect transistor for applications in bioelectronic sensors: a research review. IEEE conference publication. doi: 10.1109/NCCISP.2012.6189704 DOI:10.1109/NCCISP.2012.6189704#blank, 185 – 191.

  12. Bergveld, P. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, 17, 70–71.

    Article  CAS  Google Scholar 

  13. Bergveld, P. (1972). Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Transactions on Biomedical Engineering, 19(5), 342–451.

    Article  CAS  Google Scholar 

  14. Matsuo, T., & Wise, K. D. (1974). An integrated field effect electrode for biopotential recording. EEE Transactions on Biomedical Engineering BME, 21, 485–487.

    Article  Google Scholar 

  15. Bergveld, P. (2003). ISFET, theory and practice. Sensors and Actuators B, 88, 1–20.

    Article  CAS  Google Scholar 

  16. Yuqing, M., Jianguo, G., & Jianrong, C. (2003). Ion sensitive field effect transducer-based biosensors. Biotechnology Advances, 21, 527–534.

    Article  Google Scholar 

  17. Ishige, Y., Shimoda, M., & Kamahari, M. (2009). Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Biosensors and Bioelectronics, 24, 1096–1102.

    Article  CAS  Google Scholar 

  18. Sahoo, R., & Mishro, R. R. (2009). Simulations of carbon nanotube field effect transistors. International Journal of Electronic Engineering Research, 1, 117–125.

    Google Scholar 

  19. Javey, A., Kim, H., Brink, M., et al. (2002). High-κ dielectrics for advanced carbon nanotube transistors and logic gates. Nature Materials, 1, 241–246.

    Article  CAS  Google Scholar 

  20. Javey, A., Guo, J., Farmer, D. B., et al. (2004). Carbon nanotube field-effect transistors with integrated ohmic contacts and high-K gate dielectrics. Nano Letters, 4, 447–450.

    Article  CAS  Google Scholar 

  21. Dong, Z., Wejinya, U. C., & Chalamalasetty, S. N. S. (2012). Development of CNT-ISFET based pH sensing system using atomic force microscopy. Sensors and Actuators, A: Physical, 173, 293–301.

    Article  CAS  Google Scholar 

  22. Chin, S. K., Seath, D., Lam, K. T., et al. (2010). Device physics and characteristics of graphene nanoribbon tunneling FETs. IEEE Transaction on Electron Devices., 57, 3144–3152.

    Article  CAS  Google Scholar 

  23. Neto, A. H. C., Guinea, F., Peres, N. M. R., et al. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81, 1,109–163.

    Google Scholar 

  24. Stain, M. R., Unluer, D., & Ghosh, A. (2009). Graphene devices. Interconnect and Circuits Challenges and Opportunities. IEEE, 69–72.

  25. Choudhury, M. R., Yoon, Y., Guo, J., et al. (2011). Graphene nanoribbon FETs: technology exploration for performance and reliability. IEEE Transaction on Nanotechnology, 10, 727–736.

    Article  Google Scholar 

  26. Chen, Z., Lin, Y. M., Rooks, M. J., et al. (2007). Graphene nano-ribbon electronics. Physica E, 40, 228–232.

    Article  CAS  Google Scholar 

  27. Lee, R. S., Kim, H. J., Fischer, J. E., et al. (1997). Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature, 387, 255–257.

    Article  Google Scholar 

  28. Wang, Z., Liu, J., Liang, Q., et al. (2002). Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst, 127, 653–658.

    Article  CAS  Google Scholar 

  29. Guo, M., Chen, J., Li, J., et al. (2004). Carbon nanotubes-based amperometric cholesterol biosensor fabricated through layer-by-layer technique. Electroanalysis, 16, 1992–1998.

    Article  CAS  Google Scholar 

  30. Raicopol, M., Prună, A., Damian, C., et al. (2013). Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Research Letters, 316, 1–8.

    Google Scholar 

  31. Mathur, R. B., Pande, S., Singh, B. P., et al. (2008). Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polymer Composites. doi:10.1002/pc.20449.

    Google Scholar 

  32. Du, C., & Pan, N. (2006). High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology, 17, 5314–5318.

    Article  CAS  Google Scholar 

  33. Guo, B., Fang, L., Zhang, B., et al. (2011). Graphene doping: a review. Insciences Journal, 1(2), 80–89.

    Article  CAS  Google Scholar 

  34. Gregory, S. D., Gabriella, L., Fang, L., et al. (2010). Ex situ vapor phase boron doping of silicon nanowires using BBr3. Nanoscale, 2, 1165–1170.

    Article  Google Scholar 

  35. Hiroshi, S., & Kioshi, I. (2009). Gas flow sputtering: versatile process for the growth of nanopillars, nanoparticles and epitaxial thin films. Journal of Magnetism and Magnetic Materials, 321, 872–875.

    Article  Google Scholar 

  36. Antti, R., & Mikko, R. (2002). Reaction mechanism studies on the zirconium chloride-water atomic layer deposition process. Journal of Materials Chemistry, 12, 1484–1489.

    Article  Google Scholar 

  37. Javey, A., Tu, R., Farmer, D. B., et al. (2005). High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Letters, 5, 345–348.

    Article  CAS  Google Scholar 

  38. Norouzi, P., Faridbod, F., Esfahani, N. E., et al. (2010). Cholesterol biosensor based on MWCNTs-MnO2 nanoparticles using FFT continuous cyclic voltammetry. International Journal of Electrochemical Science, 5, 1008–1017.

    CAS  Google Scholar 

  39. Schisterman, E. F., Moysich, K. B., England, L. J., et al. (2003). Estimation of the correlation coefficient using the Bayesian approach and its applications for epidemiologic research. BMC Medical Research Methodology. doi:10.1186/1471-2288-3-5.

    Google Scholar 

  40. George, W. B. (1982). Standard deviation, standard error. American Journal Diseases Children, 136, 937–941.

    Article  Google Scholar 

  41. Ruecha, N., Rangkupan, R., Rodthongkum, N., et al. (2014). Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosensors and Bioelectronics, 52, 13–19.

    Article  CAS  Google Scholar 

  42. Ali, M. A., Srivastava, S., Solanki, P. R., et al. (2012). Nanostructured anatase-titanium dioxide based platform for application to microfluidics cholesterol biosensor. Applied Physics Letters, 101(084105), 1–5.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Council of Scientific and Industrial Research, India, for the award of Senior Research Fellowship to A. Barik (File No. 9/1099(0001)/2013-EMR-I). The authors are also thankful to Tezpur University and the University of Science and Technology, Meghalaya, for providing the facilities in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Abdul Barik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, M.A., Sarma, M.K., Sarkar, C.R. et al. Highly Sensitive Potassium-Doped Polypyrrole/Carbon Nanotube-Based Enzyme Field Effect Transistor (ENFET) for Cholesterol Detection. Appl Biochem Biotechnol 174, 1104–1114 (2014). https://doi.org/10.1007/s12010-014-1029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1029-5

Keywords

Navigation