Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 945–959 | Cite as

Horseradish Peroxidase Enzyme Immobilized Graphene Quantum Dots as Electrochemical Biosensors

  • A. Muthurasu
  • V. GaneshEmail author
Article

Abstract

Green colour emitting graphene quantum dots (GQDs) are prepared by a simple acid reflux reaction of graphene oxide (GO) produced using a modified Hummer’s method. Structural and morphological characterizations of such GQDs are performed using spectroscopic (FTIR, UV–vis and photoluminescence) and microscopic (transmission electron microscopy) techniques. These studies reveal the formation of stable, uniform spherical particles of GQDs which emit a green colour and possess surface functional moieties such as epoxide, hydroxyl (−OH) and carboxyl (−COOH) groups. Further, the possibility of immobilizing biomolecules on GQDs using these surface active functional groups is explored. As an example, an enzyme namely horseradish peroxidase (HRP) is shown to be anchored on these GQDs using a coupling reaction between an acid and amine leading to the formation of a peptide amide bond. Enzymatic activity of HRP is investigated by simply drop-casting HRP-immobilized GQDs onto a glassy carbon electrode. Electrochemical studies clearly reveal the formation of a well-defined redox peak and the dependence of redox peak current on scan rate suggests that the HRP enzyme is anchored onto the electrode, surface confined and exhibits a direct electron transfer process that is predominantly controlled by a diffusion process. These HRP-functionalized GQDs are used as a sensing platform for hydrogen peroxide detection. This particular electrochemical biosensor shows the sensitivity values of 0.905 and 7.057 μA/mM and detection limits of ~530 nM and 2.16 μM along with a fast response time of ~2−3 s.

Figure

Preparation of graphene quantum dots (GQDs) and their functionalization with horseradish peroxidase (HRP) for electrochemical detection of H2O2 is demonstrated.

Keywords

Biosensors Electrochemistry Enzymes Fluorescence Graphene quantum dots Horseradish peroxidase Kinetic parameters 

Notes

Acknowledgments

The authors acknowledge the funding from Department of Science and Technology (DST), India, and CSIR, India, through Network Projects having the project numbers GAP 16/10 and CSC 0134, respectively, for carrying out this research work. AM is thankful to CSIR for Junior Research Fellowship to pursue Ph.D. program. Central Instrumentation Facility (CIF) of CSIR–CECRI is also acknowledged for providing FTIR and TEM facilities for characterization.

References

  1. 1.
    Brownson, D. A. C., Kampouris, D. K., & Banks, C. E. (2012). Chemical Society Reviews, 41, 6944–6976.CrossRefGoogle Scholar
  2. 2.
    Chen, D., Feng, H., & Li, J. (2012). Chemical Reviews, 112, 6027–6053.CrossRefGoogle Scholar
  3. 3.
    Yao, J., Sun, Y., Yang, M., & Duan, Y. (2012). Journal of Materials Chemistry, 22, 14313–14329.CrossRefGoogle Scholar
  4. 4.
    Hummers, W. S., & Offeman, R. E. (1958). Journal of the American Chemical Society, 80, 1339–1339.CrossRefGoogle Scholar
  5. 5.
    Liu, J. J., Zhang, X. L., Cong, Z. X., Chen, Z. T., Yang, H. H., & Chen, G. N. (2013). Nanoscale, 5, 1810–1815.CrossRefGoogle Scholar
  6. 6.
    Jiang, F., Chen, D., Li, R., Wang, Y., Zhang, G., Li, S., Zheng, J., Huang, N., Gu, Y., Wang, C., & Shu, C. (2013). Nanoscale, 5, 1137–1142.CrossRefGoogle Scholar
  7. 7.
    Tetsuka, H., Asahi, R., Nagoya, A., Okamoto, K., Tajima, I., Ohta, R., & Okamoto, A. (2012). Advanced Materials, 24, 5333–5338.CrossRefGoogle Scholar
  8. 8.
    Zheng, L., Chi, Y., Dong, Y., Lin, J., & Wang, B. (2009). Journal of the American Chemical Society, 131, 4564–4565.CrossRefGoogle Scholar
  9. 9.
    Zhu, S., Zhang, J., Qiao, C., Tang, S., Li, Y., Yuan, W., Li, B., Tian, L., Liu, F., Hu, R., Gao, H., Wei, H., Zhang, H., Sun, H., & Yang, B. (2011). Chemical Communications, 47, 6858–6860.CrossRefGoogle Scholar
  10. 10.
    Liu, R., Wu, D., Liu, S., Koynov, K., Knoll, W., & Li, Q. (2009). Angewandte Chemie International Edition, 48, 4598–4601.CrossRefGoogle Scholar
  11. 11.
    Pan, D., Guo, L., Zhang, J., Xi, C., Xue, Q., Huang, H., Li, J., Zhang, Z., Yu, W., Chen, Z., Li, Z., & Wu, M. (2012). Journal of Materials Chemistry, 22, 3314–3318.CrossRefGoogle Scholar
  12. 12.
    Zhang, M., Bai, L., Shang, W., Xie, W., Ma, H., Fu, Y., Fang, D., Sun, H., Fan, L., Han, M., Liu, C., & Yang, S. (2012). Journal of Materials Chemistry, 22, 7461–7467.CrossRefGoogle Scholar
  13. 13.
    Shen, J., Zhu, Y., Chen, C., Yang, X., & Li, C. (2011). Chemical Communications, 47, 2580–2582.CrossRefGoogle Scholar
  14. 14.
    Zhuo, S., Shao, M., & Lee, S. T. (2012). ACS Nano, 6, 1059–1064.CrossRefGoogle Scholar
  15. 15.
    Jing, Y., Zhu, Y., Yang, X., Shen, J., & Li, C. (2010). Langmuir, 27, 1175–1180.CrossRefGoogle Scholar
  16. 16.
    Liu, Z., Robinson, J. T., Sun, X., & Dai, H. (2008). Journal of the American Chemical Society, 130, 10876–10877.CrossRefGoogle Scholar
  17. 17.
    Yang, F., Zhao, M., Zheng, B., Xiao, D., Wu, L., & Guo, Y. (2012). Journal of Materials Chemistry, 22, 25471–25479.CrossRefGoogle Scholar
  18. 18.
    Fan, L., Hu, Y., Wang, X., Zhang, L., Li, F., Han, D., Li, Z., Zhang, Q., Wang, Z., & Niu, L. (2012). Talanta, 101, 192–197.CrossRefGoogle Scholar
  19. 19.
    Wang, D., Wang, L., Dong, X., Shi, Z., & Jin, J. (2012). Carbon, 50, 2147–2154.CrossRefGoogle Scholar
  20. 20.
    Sun, H., Gao, N., Wu, L., Ren, J., Wei, W., & Qu, X. (2013). Chemistry - A European Journal, 19, 13362–13368.CrossRefGoogle Scholar
  21. 21.
    Razmi, H., & Rezaei, R. M. (2013). Biosensors and Bioelectronics, 41, 498–504.CrossRefGoogle Scholar
  22. 22.
    Li, L. L., Ji, J., Fei, R., Wang, C. Z., Lu, Q., Zhang, J. R., Jiang, L. P., & Zhu, J. J. (2012). Advanced Functional Materials, 22, 2971–2979.CrossRefGoogle Scholar
  23. 23.
    Ma, L., Yuan, R., Chai, Y., & Chen, S. (2009). Journal of Molecular Catalysis B: Enzymatic, 56, 215–220.CrossRefGoogle Scholar
  24. 24.
    Wang, H. S., Pan, Q. X., & Wang, G. X. (2005). Sensors, 5, 266–276.CrossRefGoogle Scholar
  25. 25.
    Chen, S., Yuan, R., Chai, Y., Yin, B., Li, W., & Min, L. (2009). Electrochimica Acta, 54, 3039–3046.CrossRefGoogle Scholar
  26. 26.
    Zhang, H. L., Lai, G. S., Han, D. Y., & Yu, A. M. (2008). Analytical and Bioanalytical Chemistry, 390, 971–977.CrossRefGoogle Scholar
  27. 27.
    Thenmozhi, K., & Narayanan, S. S. (2007). Bioanalytical Chemistry, 387, 1075–1082.CrossRefGoogle Scholar
  28. 28.
    Rejeb, I. B., Arduini, F., Amine, A., Gargouri, M., & Palleschi, G. (2007). Analytica Chimica Acta, 594, 1–8.CrossRefGoogle Scholar
  29. 29.
    Hua, M. Y., Lin, Y. C., & Tsai, R. Y. (2012). Journal of Materials Chemistry, 22, 2566–2574.CrossRefGoogle Scholar
  30. 30.
    Xiao, Y., Ju, H. X., & Chen, H. Y. (2000). Analytical Biochemistry, 278, 22–28.CrossRefGoogle Scholar
  31. 31.
    Wang, G., Xu, J. J., & Chen, H. Y. (2003). Biosensors and Bioelectronics, 18, 335–343.CrossRefGoogle Scholar
  32. 32.
    Roy, J., Abraham, T. E., Abhijith, K. S., Sujith Kumar, P. V., & Thakur, M. S. (2005). Biosensors and Bioelectronics, 21, 206–211.CrossRefGoogle Scholar
  33. 33.
    Zhang, Y., Zeng, G. M., Tang, L., Huang, D. L., Jiang, X. Y., & Chen, Y. N. (2007). Biosensors and Bioelectronics, 22, 2121–2126.CrossRefGoogle Scholar
  34. 34.
    Caramori, S. S., & Fernandes, K. F. (2004). Process Biochemistry, 39, 883–888.CrossRefGoogle Scholar
  35. 35.
    Won, Y. H., Aboagye, D., Jang, H. S., Jitianu, A., & Stanciu, L. A. (2010). Journal of Materials Chemistry, 20, 5030–5034.CrossRefGoogle Scholar
  36. 36.
    Chen, H. C., Hua, M. Y., Liu, Y. C., Yang, H. W., & Tsai, R. Y. (2012). Journal of Materials Chemistry, 22, 13252–13259.CrossRefGoogle Scholar
  37. 37.
    Zhou, K., Zhu, Y., Yang, X., Luo, J., Li, C., & Luan, S. (2010). Electrochimica Acta, 55, 3055–3060.CrossRefGoogle Scholar
  38. 38.
    Selvakumar, P., Binesh, U., & Chen, S. M. (2012). International Journal of Electrochemical Science, 7, 7935–7947.Google Scholar
  39. 39.
    Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Nature Chemistry, 2, 1015–1024.CrossRefGoogle Scholar
  40. 40.
    Liu, H., Ye, T., & Mao, C. (2007). Angewandte Chemie International Edition, 446, 6473–6475.CrossRefGoogle Scholar
  41. 41.
    Zhu, S., Zhang, J., Tang, S., Qiao, C., Wang, L., Wang, H., Liu, X., Li, B., Li, Y. F., Yu, W., Wang, X. F., Sun, H. C., & Yang, B. (2012). Advanced Functional Materials, 22, 4732–4740.CrossRefGoogle Scholar
  42. 42.
    Li, L., Wu, G., Yang, G. H., Peng, J., Zhao, J., & Zhu, J. J. (2013). Nanoscale, 5, 4015–4039.CrossRefGoogle Scholar
  43. 43.
    Sathish, K. K., Ganesh, V., Palaniappan, A., & Sheela, B. (2014). Materials Chemistry and Physics, 143, 1325–1330.CrossRefGoogle Scholar
  44. 44.
    Polsky, R., Harper, J. C., Dirk, S. M., Arango, D. C., Wheeler, D. R., & Brozik, S. M. (2007). Langmuir, 23, 364–366.CrossRefGoogle Scholar
  45. 45.
    Yi, X., Xian, J. H., & Yuan, C. H. (2000). Analytical Biochemistry, 1, 22–28.CrossRefGoogle Scholar
  46. 46.
    Wang, L., & Wang, E. (2004). Electrochemistry Communications, 6, 225–229.CrossRefGoogle Scholar
  47. 47.
    Xiang, C., Zou, Y., Sun, L., & Xu, F. (2008). Analytical Letters, 41, 2224–2226.CrossRefGoogle Scholar
  48. 48.
    Chen, H., & Dong, S. (2007). Biosensors and Bioelectronics, 22, 1811–1815.CrossRefGoogle Scholar
  49. 49.
    Zhao, X., Mai, Z., Kang, X., & Zou, X. (2008). Biosensors and Bioelectronics, 23, 1032–1038.CrossRefGoogle Scholar
  50. 50.
    Farzana, S., Ganesh, V., & Berchmans, S. (2013). Journal of the Electrochemical Society, 160, H573–H580.CrossRefGoogle Scholar
  51. 51.
    Sheng, Q., Wang, M., & Zheng, J. (2010). Sensors and Actuators B: Chemical, 160, 1070–1077.CrossRefGoogle Scholar
  52. 52.
    Li, M., Xu, S., Tang, M., Liu, L., Gao, F., & Wang, Y. (2011). Electrochimica Acta, 56, 1144–1149.CrossRefGoogle Scholar
  53. 53.
    Zhang, L., Cheng, H., & Zhang, H. (2012). Electrochimica Acta, 65, 122–126.CrossRefGoogle Scholar
  54. 54.
    Lei, C. X., Wang, H., Shen, G. L., & Yu, R. Q. (2004). Electroanalysis, 16, 736–740.CrossRefGoogle Scholar
  55. 55.
    Zeng, Y. L., Huang, H. W., Jiang, J. H., Tian, M. N., & Li, C. X. (2007). Analytica Chimica Acta, 604, 170–176.CrossRefGoogle Scholar
  56. 56.
    Xua, Q., Zhua, J. J., & Hu, X. Y. (2007). Analytica Chimica Acta, 597, 151–156.CrossRefGoogle Scholar
  57. 57.
    Gu, B. X., Xu, C. X., Zhu, G. P., Liu, S. Q., Chen, L. Y., Wang, M. L., & Zhu, J. J. (2009). Journal of Physical Chemistry B, 113, 6553–6557.CrossRefGoogle Scholar
  58. 58.
    Dimcheva, N., & Horozova, E. (2005). Analytical and Bioanalytical Chemistry, 382, 1374–1379.CrossRefGoogle Scholar
  59. 59.
    Zhao, J., Henkens, R., Stonehuerner, T., O’Daly, J., & Crunbliss, A. (1992). Journal of Electroanalytical Chemistry, 327, 109–119.CrossRefGoogle Scholar
  60. 60.
    Yang, Y., Yang, G., Huang, Y., Bai, H., & Lu, X. (2009). Colloids and Surfaces A, 340, 50–55.CrossRefGoogle Scholar
  61. 61.
    Liu, Y., Yuan, R., & Chai, Y. Q. (2006). Sensors and Actuators B: Chemical, 115, 109–115.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Electrodics and Electrocatalysis (EEC) DivisionCSIR–Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia

Personalised recommendations