Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1043–1058 | Cite as

Immobilization of Horseradish Peroxidase Enzyme on Nanoporous Titanium Dioxide Electrodes and Its Structural and Electrochemical Characterizations

  • E. T. Deva Kumar
  • V. GaneshEmail author
Article

Abstract

Hierarchically ordered, honeycomb-like nanoporous TiO2 electrodes are prepared by a simple electrochemical anodization process using ammonium fluoride dissolved in ethylene glycol as an electrolytic medium. Formation of hexagonally arranged nanopores along with the tubular structure and anatase crystalline phase of TiO2 is confirmed by field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) studies. Further, these nanoporous TiO2 electrodes are employed as a substrate for enzyme (horseradish peroxidase, HRP) immobilization in an attempt to enhance the electron transport across the semiconductor electrode–electrolyte interface. Two different strategies, namely, physical entrapment and covalent linking, are used for anchoring the enzyme. Various parameters such as conductivity, stability, enzyme loading, enzymatic activity, sensitivity, linear range, etc., are investigated by using electrochemical techniques. Structural and morphological analyses of enzyme-modified electrodes are carried out using spectroscopic (UV − vis) and microscopic (AFM) methods. In the case of physical entrapment, a simple drop casting method of HRP solution on the nanoporous TiO2 electrodes is used in contrast to chemical linking method where a monolayer of 3-aminopropyltrimethoxy silane (APTMS) is formed initially on TiO2 followed by HRP immobilization using an amide coupling reaction. Interestingly, both of these methods result in anchoring of HRP enzyme, but the amount of enzyme loading and the stability are found to be higher in the covalent linking method. Cyclic voltammetric studies reveal the formation of a well-defined reversible peak for HRP enzyme. Dependence of peak current with the scan rate suggests that HRP enzyme is immobilized and stable and that the overall electron transfer process is predominantly controlled by a diffusion process. Enzymatic activity of HRP is investigated by monitoring the reduction process of hydrogen peroxide by incremental addition using cyclic voltammetry and amperometry techniques, from which several kinetic parameters are determined.

Keywords

Electrochemical sensor Enzymes Hydrogen peroxide Horseradish peroxidase Nanomaterials Semiconductor electrodes Titanium dioxide 

Notes

Acknowledgments

The authors acknowledge the funding from the Department of Science and Technology (DST), India, through Fast Track Scheme for Young Scientists with project number GAP 16/10 for carrying out this research work. Central Instrumentation Facility (CIF) of CSIR–CECRI, Karaikudi is also acknowledged for providing necessary characterization facilities.

References

  1. 1.
    Srinivasan, S., & Chizmadzhev, Y. A. (1985). Comprehensive treatise of electrochemistry, 10. New York: Plenum.CrossRefGoogle Scholar
  2. 2.
    Armstrong, F. A., Heering, H. A., & Hirst, J. (1997). Chemical Society Reviews, 26, 169–179.CrossRefGoogle Scholar
  3. 3.
    Song, S., Clark, R. A., Bowden, E. F., & Tarlov, M. J. (1993). Journal of Physical Chemistry, 97, 6564–6572.CrossRefGoogle Scholar
  4. 4.
    Rusling, J. F. (1998). Accounts of Chemical Research, 31, 363–369.CrossRefGoogle Scholar
  5. 5.
    Boussaad, S., & Tao, N. J. (1999). Journal of the American Chemical Society, 121, 4510–4515.CrossRefGoogle Scholar
  6. 6.
    Willit, J. L., & Bowden, E. F. (1987). Journal of Electroanalytical Chemistry, 221, 265–274.CrossRefGoogle Scholar
  7. 7.
    Huang, H., Hu, N., Zeng, Y., & Zhou, G. (2002). Analytical Biochemistry, 308, 141–151.CrossRefGoogle Scholar
  8. 8.
    Liu, H., & Hu, N. (2003). Analytica Chimica Acta, 481, 91–99.CrossRefGoogle Scholar
  9. 9.
    Qiao, Z., & Dong, S. (1993). Chinese University Chemistry, 14, 1377–1379.Google Scholar
  10. 10.
    Zhao, Q., Gan, Z., & Zhuang, Q. (2002). Electroanalysis, 14, 1609–1613.CrossRefGoogle Scholar
  11. 11.
    Ahammad, A. J. S., Sarker, S., Rahman, M. A., & Lee, J. J. (2010). Electroanalysis, 22, 694–700.CrossRefGoogle Scholar
  12. 12.
    Ahammad, A. J. S., Rahman, M. A., Xu, G. R., Kim, S., & Lee, J. J. (2011). Electrochimica Acta, 56, 5266–5271.CrossRefGoogle Scholar
  13. 13.
    Ahamad, A. J. S., Choi, Y. H., Koh, K., Kim, J. H., Lee, J. J., & Lee, M. (2011). Journal of the Electrochemical Society, 6, 1906–1916.Google Scholar
  14. 14.
    Xuan, J., Jiang, L. P., & Zhu, J. J. (2010). Chinese Journal of Analytical Chemistry, 38, 513–516.CrossRefGoogle Scholar
  15. 15.
    Cuendet, P., & Gratzel, M. (1986). Bioelectrochemistry and Bioenergetics, 16, 125–133.CrossRefGoogle Scholar
  16. 16.
    Wang, B., Zhang, J. J., Pan, Z. Y., Tao, X. Q., & Wang, H. S. (2009). Biosensors and Bioelectronics, 24, 1141–1145.CrossRefGoogle Scholar
  17. 17.
    Dave, B. C., Dunn, B., Valentine, J. S., & Zink, J. I. (1994). Analytical Chemistry, 66, 1120–1127.CrossRefGoogle Scholar
  18. 18.
    Bowden, E. F., Hawkridge, F. M., & Blount, H. N. (1980). Bioelectrochemistry and Bioenergetics, 7, 447–457.CrossRefGoogle Scholar
  19. 19.
    Ru, J., Du, J., He, H. X., & Lu, X. Q. (2013). Chinese Journal of Analytical Chemistry, 41, 1249–1253.CrossRefGoogle Scholar
  20. 20.
    Chaplin, M. F., & Bucke, C. (1990). Enzyme technology. Cambridge: Cambridge University Press.Google Scholar
  21. 21.
    Armstrong, F. A., & Wilson, G. S. (2000). Electrochimica Acta, 45, 2623–2645.CrossRefGoogle Scholar
  22. 22.
    Liu, S. Q., & Ju, H. X. (2002). Analytical Biochemistry, 307, 110–116.CrossRefGoogle Scholar
  23. 23.
    Qian, L., & Yang, X. (2006). Talanta, 68, 721–727.CrossRefGoogle Scholar
  24. 24.
    Wang, L., & Wang, E. (2004). Electrochemistry Communications, 6, 225–229.CrossRefGoogle Scholar
  25. 25.
    Wang, J., Wang, L., Di, J., & Tu, Y. (2009). Talanta, 77, 1454–1459.CrossRefGoogle Scholar
  26. 26.
    Hiroyuki, O. (1998). Electrochimica Acta, 43, 1581–1587.CrossRefGoogle Scholar
  27. 27.
    Dunford, H. B. (1991). In J. Eerse, K. E. Everse, & M. B. Grisham (Eds.), Peroxidases in chemistry and biology (p. 1). Boca Raton: CRC.Google Scholar
  28. 28.
    Creighton, T. E. (1984). Proteins—structure and molecular properties. New York: Freeman.Google Scholar
  29. 29.
    Lehninger, A. I., Nelson, D. L., & Cox, M. M. (1993). Principles of biochemistry (2nd ed.). New York: Worth.Google Scholar
  30. 30.
    Ruzgas, T., Csoregi, E., Emnes, J., Gorton, L., & Marko-Varga, G. (1996). Analytica Chimica Acta, 330, 123–138.CrossRefGoogle Scholar
  31. 31.
    Ekanayake, E. M. I. M., Preethichandra, D. G. M., & Kaneto, K. (2008). Sensors and Actuators B Chemical, 132, 166–171.CrossRefGoogle Scholar
  32. 32.
    Che, X., Yuan, R., Chai, Y., Ma, L., Li, W., & Li, J. (2009). Microchimica Acta, 167, 159–165.CrossRefGoogle Scholar
  33. 33.
    Huang, J. L., & Tsai, Y. C. (2009). Sensors and Actuators B Chemical, 140, 267–272.CrossRefGoogle Scholar
  34. 34.
    Tripathi, V. S., Kandimalla, V. B., & Ju, H. (2006). Biosensors and Bioelectronics, 21, 1529–1535.CrossRefGoogle Scholar
  35. 35.
    Zhou, K., Zhu, Y., Yang, X., Luo, J., Li, C., & Luan, S. (2010). Electrochimica Acta, 55, 3055–3060.CrossRefGoogle Scholar
  36. 36.
    Zhou, K., Zhu, Y., Yang, X., & Li, C. (2011). Electroanalysis, 23, 862–869.CrossRefGoogle Scholar
  37. 37.
    Zhiguo, G., Shuping, Y., Zaijun, L., Xiulan, S., Guangli, W., Yinjun, F., et al. (2011). Analytica Chimica Acta, 701, 75–80.CrossRefGoogle Scholar
  38. 38.
    Lei, C. X., Wang, H., Shen, G. L., & Yu, R. Q. (2004). Electroanalysis, 16, 736–740.CrossRefGoogle Scholar
  39. 39.
    Zhong, H., Yuan, R., Chai, Y., Li, W., Zhang, Y., & Chengyan, W. (2011). Bioprocess and Biosystems Engineering, 34, 923–930.CrossRefGoogle Scholar
  40. 40.
    Curulli, A., Cusma, A., Kaciulis, S., Padeletti, G., Pandolfi, L., Valentini, F., et al. (2006). Surface and Interface Analysis, 38, 478–481.CrossRefGoogle Scholar
  41. 41.
    Si, P., Ding, S., Yuan, J., Lou, X. W., & Kim, D. H. (2011). ACS Nano, 5, 7617–7626.CrossRefGoogle Scholar
  42. 42.
    Xu, M., Da, P., Wu, H., Zhao, D., & Zheng, G. (2012). Nano Letters, 12, 1503–1508.CrossRefGoogle Scholar
  43. 43.
    Tang, J., Wang, Y., Li, J., Da, P., Geng, J., & Zheng, G. (2014). Journal of Materials Chemistry A, 2, 6153–6157.CrossRefGoogle Scholar
  44. 44.
    Paulose, M., Prakasam, H. E., Varghese, O. K., Peng, L., Popat, K. C., Mor, G. K., et al. (2007). Journal of Physical Chemistry C, 111, 14992–14997.CrossRefGoogle Scholar
  45. 45.
    Yoriya, S., & Grimes, C. A. (2011). Journal of Materials Chemistry, 21, 102–108.CrossRefGoogle Scholar
  46. 46.
    Hanzu, I., Djenizian, T., & Knauth, P. (2011). Journal of Physical Chemistry C, 115, 5989–5996.CrossRefGoogle Scholar
  47. 47.
    Baram, N., & Ein-Eli, Y. (2010). Journal of Physical Chemistry C, 114, 9781–9790.CrossRefGoogle Scholar
  48. 48.
    Murphy, A. B. (2007). Solar Energy Mater. Solar Cells, 91, 1326–1337.CrossRefGoogle Scholar
  49. 49.
    Anderson, C., & Bard, A. J. (1997). Journal of Physical Chemistry B, 101, 2611–2616.CrossRefGoogle Scholar
  50. 50.
    Yu, J., & Yu, X. (2008). Environmental Science and Technology, 42, 4902–4907.CrossRefGoogle Scholar
  51. 51.
    Yi, X., Xian, J. H., & Yuan, C. H. (2000). Analytical Biochemistry, 278, 22–28.CrossRefGoogle Scholar
  52. 52.
    Ferri, T., Poscia, A., & Santucci, R. (1998). Bioelectrochemistry and Bioenergetics, 45, 221–226.CrossRefGoogle Scholar
  53. 53.
    Frew, J. E., Harmer, M. A., Hill, H. A. O., & Libor, S. I. (1986). Journal of Electroanalytical Chemistry, 201, 1–10.CrossRefGoogle Scholar
  54. 54.
    Gu, B. X., Xu, C. X., Zhu, G. P., Liu, S. Q., Chen, L. Y., Wang, M. L., et al. (2009). Journal of Physical Chemistry B, 113, 6553–6557.CrossRefGoogle Scholar
  55. 55.
    Dimcheva, N., & Horozova, E. (2005). Analytical and Bioanalytical Chemistry, 382, 1374–1379.CrossRefGoogle Scholar
  56. 56.
    Polsky, R., Harper, J. C., Dirk, S. M., Arango, D. C., Wheeler, D. R., & Brozik, S. M. (2007). Langmuir, 23, 364–366.CrossRefGoogle Scholar
  57. 57.
    Zhang, Y., Liu, L., Xi, F., Wu, T., & Lin, X. (2010). Electroanalysis, 22, 277–285.CrossRefGoogle Scholar
  58. 58.
    Kafi, A. K. M., Wu, G., & Chen, A. (2008). Biosensors and Bioelectronics, 24, 566–571.CrossRefGoogle Scholar
  59. 59.
    Zeng, Y. L., Huang, H. W., Jiang, J. H., Tian, M. N., & Li, C. X. (2007). Analytica Chimica Acta, 604, 170–176.CrossRefGoogle Scholar
  60. 60.
    Xua, Q., Zhua, J. J., & Hu, X. Y. (2007). Analytica Chimica Acta, 597, 151–156.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Electrodics and Electrocatalysis (EEC) DivisionCSIR—Central Electrochemical Research Institute (CSIR–CECRI)KaraikudiIndia

Personalised recommendations