Skip to main content
Log in

Enhancing Performance of Uricase Using Multiwalled Carbon Nanotube Doped Polyaniline

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Multiwalled carbon nanotubes (CNT) doped polyaniline (Pani) nanocomposite has been electrochemically deposited onto indium tin oxide (ITO)-coated glass substrate for fabrication of uric acid biosensor. To achieve this, uricase (from Bacillus fastidiosus) has been covalently immobilized onto glutaraldehyde-modified CNT-Pani/ITO and characterized using cyclic voltammetry (CV), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS), etc. CV studies of CNT-Pani/ITO electrode reveals that the system obeys quasi-reversible electron transfer behavior with diffusion coefficient of 2.3346 × 10−8 cm s−1 in K3FeCN6. Fabricated uricase-CNT-Pani/ITO electrodes were tested for uric acid detection in buffer and spiked serum samples electrochemically. It was found that fabricated electrode was able to detect 0.01–1.0 mM uric acid using CV and 0.02–0.8 mM uric acid using differential pulse voltammetry (DPV). The enhanced electrochemical performance of this biosensor is due to the high enzyme loading synergistically connected to CNT-Pani nanocomposite leading to improved enzyme characteristics such as Km value of 4.85 × 10−3 mM L−1 (about 70 times less than the free enzyme), sensitivity of 43.2 μA mM−1 for CV-based detection and 8.38 μA mM−1 for DPV-based detection within response time of 60 s. Fabricated electrodes were able to maintain their electrochemical activity with 60 times reusability and were stable up to 28 weeks when stored at 4 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Poudel, B., Yadav, B. K., Kumar, A., Jha, B., & Raut, K. B. (2014). Journal of Tropical Biomedicine, 4, 59–64.

    Article  Google Scholar 

  2. Arora, K., Sumana, G., Saxena, V., Gupta, R. K., Gupta, S. K., Yakhmi, J. V., et al. (2007). Analytica Chimica Acta, 594, 17–23.

    Article  CAS  Google Scholar 

  3. Ali, S. M. U., Alvi, N. H., Ibupoto, Z., Nur, O., Willander, M., & Danielsson, B. (2011). Sensors and Actuators B, 152, 241–247.

    Article  Google Scholar 

  4. Wanekaya, A. K., Chen, W., Myung, N. V., & Mulchandani, A. (2006). Electroanalysis, 18, 533–550.

    Article  CAS  Google Scholar 

  5. Arora, K., Chand, S., & Malhotra, B. D. (2006). Analytica Chimica Acta, 568, 259–274.

    Article  CAS  Google Scholar 

  6. Yang, D. S., Jung, D. J., & Choi, S. H. (2010). Radiation Physics and Chemistry, 79, 434–440.

    Article  CAS  Google Scholar 

  7. Iiloma, S. (1991). Nature, 354, 56–58.

    Article  Google Scholar 

  8. Heer, W. A., Charelain, A., & Ugarte, D. (1995). Science, 270, 1179–1180.

    Article  Google Scholar 

  9. Jiang, Y., Wang, A., & Kan, J. (2007). Sensors and Actuators B, 124, 529–534.

    Article  CAS  Google Scholar 

  10. Kan, J., Pan, X., & Chen, C. (2004). Biosensors and Bioelectronics, 19, 1635.

    Article  CAS  Google Scholar 

  11. Castillo-Ortega, M. M., Rodríguez, D. E., Encinas, J. C., Plascencia, M., Mendez-Velarde, F. A., & Olayo, R. C. (2002). Sensors and Actuators B, 85, 19.

    Article  CAS  Google Scholar 

  12. Behera, S., & Raj, C. R. (2007). Sensors and Actuators B, 128, 31–38.

    Article  CAS  Google Scholar 

  13. Zhang, F. F., Xiao-Li Wang, X. L., Li, C. X., Li, X. H., Wan, Q., Xian, Y. Z., et al. (2005). Analytical and Bioanalytical Chemistry, 382, 1368–1373.

    Article  CAS  Google Scholar 

  14. Chen, D., Wang, Q., Jin, J., Wu, P., Wang, H., Yu, S., et al. (2010). Analytical Chemistry, 82, 2448–2455.

    Article  CAS  Google Scholar 

  15. Liu, A., Honma, I., & Zhou, H. (2007). Biosensors and Bioelectronics, 23, 74–80.

    Article  Google Scholar 

  16. Chauhan, N., & Pundir, C. S. (2011). Analytical Biochemistry, 413, 97–103.

    Article  CAS  Google Scholar 

  17. Yiting, W., Lei, Y., Ziqiang, Z., Jian, Z., & Jianzhong, Z. (2009). Analytical Letters, 42, 775–789.

    Article  Google Scholar 

  18. Zhao, Y., Yan, X., Kang, Z., Lin, P., Fang, X., Lei, Y., et al. (2013). Microchimica Acta, 180, 759–766.

    Article  CAS  Google Scholar 

  19. Jeykumari, D. R. S., Kumar, S. S., & Narayanan, S. S. (2005). Pramana Journal of Physics, 65, 731–738.

    Article  CAS  Google Scholar 

  20. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., et al. (2008). Carbon, 46, 833–840.

    Article  CAS  Google Scholar 

  21. Pruneanu, S., Veress, E., Marian, I., & Oniciu, L. (1999). Journal of Material Science, 34, 2733–2739.

    Article  CAS  Google Scholar 

  22. Randles, J. E. B. (1948). Transactions of Faraday Society, 44, 322–327.

    Article  CAS  Google Scholar 

  23. Bard, A. J., & Faulkner, L. R. (2000). Electrochemical Methods: fundamentals and applications (2nd ed.). New York: Wiley.

    Google Scholar 

  24. Pengm, H., Mo, Z., Liao, S., Liang, H., Yang, L., Luo, F., et al. (2013). Science Reports, 3, 1765.

    Google Scholar 

  25. Silverstein, R. M., & Webster, F. X. (2002). Spectrometric identification of organic compounds sixth edition. India: Wiley. 165.

    Google Scholar 

  26. Saraf, R. (2013). International Journal of Nano Devices, 2, 1–6.

    Google Scholar 

  27. Gerard, M., Ramanathan, K., Chaubey, A., & Malhotra, B. D. (1999). Electroanalysis, 11, 450.

    Article  CAS  Google Scholar 

  28. Stilwell, D. E., & Park, S. M. (1988). Journal of the Electrochemical Society, 135, 2491.

    Article  CAS  Google Scholar 

  29. Piermarini, S., Migliorelli, D., Volpe, G., Massoud, R., Pierantozzi, A., Cortese, C., et al. (2013). Sensors and Actuators B, 179, 170–174.

    Article  CAS  Google Scholar 

  30. Liu, Y., Yuan, M., Liu, L., & Guo, R. (2013). Sensors and Actuators B, 176, 592–597.

    Article  CAS  Google Scholar 

  31. Rawal, R., Chawla, S., Chauhan, N., Dahiya, T., & Pundir, C. S. (2012). International Journal of Biological Macromolecules, 50, 112–118.

    Article  CAS  Google Scholar 

  32. Lei, Y., Liu, X., Yan, X., Song, Y., Kang, Z., Luo, N., et al. (2012). Journal of Nanoscience and Nanotechnology, 12, 513–518.

    Article  CAS  Google Scholar 

  33. Chu, H., Wei, X., Wu, M., Yan, J., & Tu, Y. (2012). Sensors and Actuators B, 163, 247–252.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Sopory, Vice Chancellor, JNU, and Prof. Bhudhani, Director, NPL, New Delhi, India for their constant encouragement and infrastructural support. DST-PURSE, DBT sponsored projects IYBA-2008 (BT/B1/12/045/2008) andRGYI-2009 (BT/PR13127/GBD/27/195/2009) are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita Arora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, K., Choudhary, M. & Malhotra, B.D. Enhancing Performance of Uricase Using Multiwalled Carbon Nanotube Doped Polyaniline. Appl Biochem Biotechnol 174, 1174–1187 (2014). https://doi.org/10.1007/s12010-014-0996-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0996-x

Keywords

Navigation