Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 880–896 | Cite as

Nanomaterial-Based Biosensors for Food Toxin Detection

  • Bansi D. MalhotraEmail author
  • Saurabh Srivastava
  • Md. Azahar Ali
  • Chandan Singh


There is an increased interest toward the development of bioelectronic devices for food toxin (mycotoxins) detection. Mycotoxins are highly toxic secondary metabolites produced by fungi like Fusarium, Aspergillus, and Penicillium that are frequently found in crops or during storage of food including cereals, nuts, fruits, etc. The contamination of food by mycotoxins has become a matter of increasing concern. High levels of mycotoxins in the diet can cause adverse, acute, and chronic effects on human health and a variety of animal species. Side effects may particularly affect the liver, kidney, nervous system, endocrine system, and immune system. Among 300 mycotoxins known till date, there are a few that are considered to play an important part in food safety, and for these, a range of analytical methods have been developed. Some of the important mycotoxins include aflatoxins, ochratoxins, fumonisins, citreoviridin, patulin, citrinin, and zearalenon. The conventional methods of analysis of mycotoxins normally require sophisticated instrumentation, e.g., liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. Hence, new analysis tools are necessary to attain more sensitive, specific, rapid, and reliable information about the desired toxin. For the last about two decades, the research and development of simpler and faster analytical procedures based on affinity biosensors has aroused much interest due to their simplicity and sensitivity. The nanomaterials have recently had a great impact on the development of biosensors. The functionalized nanomaterials are used as catalytic tools, immobilization platforms, or as optical or electroactive labels to improve the biosensing performance to obtain higher sensitivity, stability, and selectivity. Nanomaterials, such as carbon nanomaterials (carbon nanotubes and graphene), metal nanoparticles, nanowires, nanocomposites, and nanostructured metal oxide nanoparticles are playing an increasing role in the design of sensing and biosensing systems for mycotoxin determination. Furthermore, these nanobiosystems are also bringing advantages in terms of the design of novel food toxin detection strategies. We will focus on some of the recent results related to fabrication of nanomaterial-based biosensors for food toxin detection obtained in our laboratories.


Food toxins Mycotoxins Nanomaterials Carbon nano materials Graphene oxide 



We thank Dr Anchal Srivastava (Banaras Hindu University, India) and Dr G. Sumana (CSIR-National Physical Laboratory, India) for interesting discussions. S.S. acknowledges the financial support from CSIR (SRF: 31/001(0302)/2008-EMRI), New Delhi, India. The financial support received from Department of Science and Technology, India (Grant No. DST/TSG/ME/2008/18) and Indian Council of Medical Research, India (Grant No. ICMR/5/3/8/91/GM/2010-RHN) is gratefully acknowledged.


  1. 1.
    Kralj Cigić, I., & Prosen, H. (2009). An overview of conventional and emerging analytical methods for the determination of mycotoxins. International Journal of Molecular Sciences, 10(1), 62–115.CrossRefGoogle Scholar
  2. 2.
    Palchetti, I., & Mascini, M. (2008). Electroanalytical biosensors and their potential for food pathogen and toxin detection. Analytical and Bioanalytical Chemistry, 391(2), 455–471.CrossRefGoogle Scholar
  3. 3.
    Ligler, F. S., Taitt, C. R., Shriver-Lake, L. C., Sapsford, K. E., Shubin, Y., & Golden, J. P. (2003). Array biosensor for detection of toxins. Analytical and Bioanalytical Chemistry, 377(3), 469–477.CrossRefGoogle Scholar
  4. 4.
    Rasooly, A., & Herold, K. E. (2006). Biosensors for the analysis of food- and waterborne pathogens and their toxins. Journal of AOAC International, 89(3), 873–883.Google Scholar
  5. 5.
    Vidal, J. C., Bonel, L., Ezquerra, A., Hernández, S., Bertolín, J. R., Cubel, C., et al. (2013). Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosensors and Bioelectronics, 49, 146–158.CrossRefGoogle Scholar
  6. 6.
    Kaushik, A., Arya, S. K., Vasudev, A., & Bhansali, S. (2013). Recent advances in detection of ochratoxin-A. Open Journal of Applied Biosensor, 2, 1.CrossRefGoogle Scholar
  7. 7.
    Wang, J. (2005). Carbon nanotube based electrochemical biosensors: a review. Electroanalysis, 17(1), 7–14.CrossRefGoogle Scholar
  8. 8.
    Kuila, T., Bose, S., Khanra, P., Mishra, A. K., Kim, N. H., & Lee, J. H. (2011). Recent advances in graphene-based biosensors. Biosensors and Bioelectronics, 26(12), 4637–4648.CrossRefGoogle Scholar
  9. 9.
    Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., et al. (2013). Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 185, 258–264.CrossRefGoogle Scholar
  10. 10.
    Srivastava, S., Kumar, V., Ali, M. A., Solanki, P. R., Srivastava, A., Sumana, G., et al. (2013). Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale, 5(7), 3043–3051.CrossRefGoogle Scholar
  11. 11.
    Hirsch, A. (2010). The era of carbon allotropes. Nature Materials, 9(11), 868–871.CrossRefGoogle Scholar
  12. 12.
    Wu, S., Duan, N., Shi, Z., Fang, C., & Wang, Z. (2014). Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Analytical Chemistry, 86(6), 3100–3107.CrossRefGoogle Scholar
  13. 13.
    Linting, Z., Ruiyi, L., Zaijun, L., Qianfang, X., Yinjun, F., & Junkang, L. (2012). An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sensors and Actuators B: Chemical, 174, 359–365.CrossRefGoogle Scholar
  14. 14.
    Hu, L., Wu, H., La Mantia, F., Yang, Y., & Cui, Y. (2010). Thin, flexible secondary Li-ion paper batteries. ACS Nano, 4(10), 5843–5848.CrossRefGoogle Scholar
  15. 15.
    de las Casas, C., & Li, W. (2012). A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 208, 74–85.CrossRefGoogle Scholar
  16. 16.
    Mostafavi, S., Mehrnia, M., & Rashidi, A. (2009). Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination, 238(1), 271–280.CrossRefGoogle Scholar
  17. 17.
    Srivastava, A., Srivastava, S. Kalaga K. (2013). Carbon nanotube membrane filters. Springer handbook of nanomaterials: Springer, p. 1099–1116.Google Scholar
  18. 18.
    Cheng, H.-M., Yang, Q.-H., & Liu, C. (2001). Hydrogen storage in carbon nanotubes. Carbon, 39(10), 1447–1454.CrossRefGoogle Scholar
  19. 19.
    Dillon, A. C., Jones, K., Bekkedahl, T., Kiang, C., Bethune, D., & Heben, M. (1997). Storage of hydrogen in single-walled carbon nanotubes. Nature, 386(6623), 377–379.CrossRefGoogle Scholar
  20. 20.
    Kaempgen, M., Chan, C. K., Ma, J., Cui, Y., & Gruner, G. (2009). Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Letters, 9(5), 1872–1876.CrossRefGoogle Scholar
  21. 21.
    Zhang, L. L., & Zhao, X. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520–2531.CrossRefGoogle Scholar
  22. 22.
    Cha, C., Shin, S. R., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2013). Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano, 7(4), 2891–2897.CrossRefGoogle Scholar
  23. 23.
    Wohlstadter, J. N., Wilbur, J. L., Sigal, G. B., Biebuyck, H. A., Billadeau, M. A., Dong, L., et al. (2003). Carbon nanotube‐based biosensor. Advanced Materials, 15(14), 1184–1187.CrossRefGoogle Scholar
  24. 24.
    Coleman, J. N., Khan, U., Blau, W. J., & Gun’ko, Y. K. (2006). Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 44(9), 1624–1652.CrossRefGoogle Scholar
  25. 25.
    Kim, B., & Sigmund, W. M. (2004). Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir, 20(19), 8239–8242.CrossRefGoogle Scholar
  26. 26.
    Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Z., Sun, G., et al. (2003). Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. The Journal of Physical Chemistry B, 107(26), 6292–6299.CrossRefGoogle Scholar
  27. 27.
    Rivas, G. A., Rubianes, M. D., Rodríguez, M. C., Ferreyra, N. F., Luque, G. L., Pedano, M. L., et al. (2007). Carbon nanotubes for electrochemical biosensing. Talanta, 74(3), 291–307.CrossRefGoogle Scholar
  28. 28.
    Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.CrossRefGoogle Scholar
  29. 29.
    Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., et al. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152), 457–460.CrossRefGoogle Scholar
  30. 30.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., et al. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3(9), 563–568.CrossRefGoogle Scholar
  31. 31.
    Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4(4), 217–224.CrossRefGoogle Scholar
  32. 32.
    Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240.CrossRefGoogle Scholar
  33. 33.
    Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., & Zettl, A. (2010). Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials, 22(40), 4467–4472.CrossRefGoogle Scholar
  34. 34.
    Pei, S., & Cheng, H.-M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210–3228.CrossRefGoogle Scholar
  35. 35.
    Pumera, M. (2010). Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 39(11), 4146–4157.CrossRefGoogle Scholar
  36. 36.
    Pumera, M. (2011). Graphene in biosensing. Materials Today, 14(7), 308–315.CrossRefGoogle Scholar
  37. 37.
    Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. (2010). Graphene based electrochemical sensors and biosensors: a review. Electroanalysis, 22(10), 1027–1036.CrossRefGoogle Scholar
  38. 38.
    Zhou, M., Zhai, Y., & Dong, S. (2009). Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 81(14), 5603–5613.CrossRefGoogle Scholar
  39. 39.
    Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K., & Poh, H. L. (2010). Graphene for electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 29(9), 954–965.CrossRefGoogle Scholar
  40. 40.
    Harrison, B. S., & Atala, A. (2007). Carbon nanotube applications for tissue engineering. Biomaterials, 28(2), 344–353.CrossRefGoogle Scholar
  41. 41.
    Pantarotto, D., Briand, J.-P., Prato, M., & Bianco, A. (2004). Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications, 1, 16–17.CrossRefGoogle Scholar
  42. 42.
    Shi Kam, N. W., Jessop, T. C., Wender, P. A., & Dai, H. (2004). Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. Journal of the American Chemical Society, 126(22), 6850–6851.CrossRefGoogle Scholar
  43. 43.
    Liu, Z., Robinson, J. T., Sun, X., & Dai, H. (2008). PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 130(33), 10876–10877.CrossRefGoogle Scholar
  44. 44.
    Zhang, L., Xia, J., Zhao, Q., Liu, L., & Zhang, Z. (2010). Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 6(4), 537–544.CrossRefGoogle Scholar
  45. 45.
    Spencer, P.S., ed. (1995). Lathyrism, handbook of clinical neurology. Amsterdam: Elsevier.Google Scholar
  46. 46.
    Meda, H. A., Diallo, B., Buchet, J. P., Lison, D., Barennes, H., Ouangre, A., et al. (1999). Epidemic of fatal encephalopathy in preschool children in Burkina Faso and consumption of unripe ackee (Blighia sapida) fruit. Lancet, 353, 536–540.CrossRefGoogle Scholar
  47. 47.
    Taylor, S.L., Hefle, S.L. & Gauger, B.J., ed. (2001). Food toxicology. Florida: CRC Press.Google Scholar
  48. 48.
    Bush, R. K., & Hefle, S. L. (1996). Food allergens. Critical Reviews in Food Science & Nutrition, 36(S1), 119–163.CrossRefGoogle Scholar
  49. 49.
    Malish, D., Glovsky, M., Hoffman, D., Ghekiere, L., & Hawkins, J. (1981). Anaphylaxis after sesame seed ingestion. Journal of Allergy and Clinical Immunology, 67(1), 35–38.CrossRefGoogle Scholar
  50. 50.
    World Health Organization (WHO). (1997). Food safety and foodborne diseases. World Health Statistics Quarterly.Google Scholar
  51. 51.
    Dominguez, H. J., Paz, B., Daranas, A. H., Norte, M., Franco, J. M., & Fernández, J. J. (2010). Dinoflagellate polyether within the yessotoxin, pectenotoxin and okadaic acid toxin groups: characterization, analysis and human health implications. Toxicon, 56(2), 191–217.CrossRefGoogle Scholar
  52. 52.
    Etheridge, S. M. (2010). Paralytic shellfish poisoning: seafood safety and human health perspectives. Toxicon, 56(2), 108–122.CrossRefGoogle Scholar
  53. 53.
    Lefebvre, K. A., & Robertson, A. (2010). Domoic acid and human exposure risks: a review. Toxicon, 56(2), 218–230.CrossRefGoogle Scholar
  54. 54.
    Köppen, R., Koch, M., Siegel, D., Merkel, S., Maul, R., & Nehls, I. (2010). Determination of mycotoxins in foods: current state of analytical methods and limitations. Applied Microbiology and Biotechnology, 86(6), 1595–1612.CrossRefGoogle Scholar
  55. 55.
    Richard, J. L. (2007). Some major mycotoxins and their mycotoxicoses—an overview. International Journal of Food Microbiology, 119(1), 3–10.CrossRefGoogle Scholar
  56. 56.
    Turner, N. W., Subrahmanyam, S., & Piletsky, S. A. (2009). Analytical methods for determination of mycotoxins: a review. Analytica Chimica Acta, 632(2), 168–180.CrossRefGoogle Scholar
  57. 57.
    Van Egmond, H. P., Schothorst, R. C., & Jonker, M. A. (2007). Regulations relating to mycotoxins in food. Analytical and Bioanalytical Chemistry, 389(1), 147–157.CrossRefGoogle Scholar
  58. 58.
    Commission regulation (EC) no. 1881/2006. (2006). Official Journal of the European Communities: Legis, 364, 5.Google Scholar
  59. 59.
    Ellis, W., Smith, J., Simpson, B., Oldham, J., & Scott, P. M. (1991). Aflatoxins in food: occurrence, biosynthesis, effects on organisms, detection, and methods of control. Critical Reviews in Food Science & Nutrition, 30(4), 403–439.CrossRefGoogle Scholar
  60. 60.
    Ngindu, A., Kenya, P., Ocheng, D., Omondi, T., Ngare, W., Gatei, D., et al. (1982). Outbreak of acute hepatitis caused by aflatoxin poisoning in Kenya. The Lancet, 319(8285), 1346–1348.CrossRefGoogle Scholar
  61. 61.
    Probst, C., Njapau, H., & Cotty, P. J. (2007). Outbreak of an acute aflatoxicosis in Kenya in 2004: identification of the causal agent. Applied and Environmental Microbiology, 73(8), 2762–2764.CrossRefGoogle Scholar
  62. 62.
    Peckham, J. C., Doupnik, B., & Jones, O. H. (1971). Acute toxicity of ochratoxins A and B in chicks. Applied Microbiology, 21(3), 492–494.Google Scholar
  63. 63.
    Pfohl‐Leszkowicz, A., & Manderville, R. A. (2007). Ochratoxin A: an overview on toxicity and carcinogenicity in animals and humans. Molecular Nutrition & Food Research, 51(1), 61–99.CrossRefGoogle Scholar
  64. 64.
    Friis, P., Hasselager, E., & Krogh, P. (1969). Isolation of citrinin and oxalic acid from Penicillium viridicatum Westling and their nephrotoxicity in rats and pigs. Acta Pathologica Microbiologica Scandinavica, 77(3), 559–560.CrossRefGoogle Scholar
  65. 65.
    Datta, S. C., & Ghosh, J. J. (1983). Action of citreoviridin, a mycotoxin from Penicilliumcitreoviride on the gamma-aminobutyric acid metabolism of the central nervous system. Toxicon, 21, 89–92.CrossRefGoogle Scholar
  66. 66.
    Ueno, Y. (1970). Production of citreoviridin, a neurotic mycotoxin of Pénicillium citreo-viride Biourge. Production of citreoviridin, a neurotic mycotoxin of Penicillium citreo-viride Biourge, 115–32.Google Scholar
  67. 67.
    Dutton, M. F. (1996). Fumonisins, mycotoxins of increasing importance: their nature and their effects. Pharmacology & Therapeutics, 70(2), 137–161.CrossRefGoogle Scholar
  68. 68.
    Gelderblom, W., Jaskiewicz, K., Marasas, W., Thiel, P., Horak, R., Vleggaar, R., et al. (1988). Fumonisins—novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Applied and Environmental Microbiology, 54(7), 1806–1811.Google Scholar
  69. 69.
    Norred, W. P., & Voss, K. A. (1994). Toxicity and role of fumonisins in animal diseases and human esophageal cancer. Journal of Food Protection, 57(6), 522–527.Google Scholar
  70. 70.
    Johanning, E. & Ammann, H. M. (2003). Encyclopedia of Environmental Microbiology, John Wiley & Sons, Inc.Google Scholar
  71. 71.
    Osswald, H., Frank, H., Komitowski, D., & Winter, H. (1976). Long-term testing of patulin administered orally to Sprague-Dawley rats and Swiss mice. Food and Cosmetics Toxicology, 16(3), 243–247.CrossRefGoogle Scholar
  72. 72.
    Ueno, Y. (1984). Toxicological features of T-2 toxin and related trichothecenes. Fundamental and Applied Toxicology, 4(2), S124–S132.CrossRefGoogle Scholar
  73. 73.
    Shier, W., Shier, A., Xie, W., & Mirocha, C. (2001). Structure-activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon, 39(9), 1435–1438.CrossRefGoogle Scholar
  74. 74.
    Krska, R., & Molinelli, A. (2007). Mycotoxin analysis: state-of-the-art and future trends. Analytical and Bioanalytical Chemistry, 387(1), 145–148.CrossRefGoogle Scholar
  75. 75.
    Patterson, D., & Roberts, B. (1979). Mycotoxins in animal feedstuffs: sensitive thin layer chromatographic detection of aflatoxin, ochratoxin A, sterigmatocystin, zearalenone, and T-2 toxin. Journal-Association of Official Analytical Chemists, 62(6), 1265.Google Scholar
  76. 76.
    Nakajima, M., Tsubouchi, H., Miyabe, M., & Ueno, Y. (1997). Survey of aflatoxin B1 and ochratoxin A in commercial green coffee beans by high‐performance liquid chromatography linked with immunoaffinity chromatography. Food and Agricultural Immunology, 9(2), 77–83.CrossRefGoogle Scholar
  77. 77.
    Candlish, A., Stimson, W., & Smith, J. (1985). A monoclonal antibody to aflatoxin B1: detection of the mycotoxin by enzyme immunoassay. Letters in Applied Microbiology, 1(3), 57–61.CrossRefGoogle Scholar
  78. 78.
    Lee, N. A., Wang, S., Allan, R. D., & Kennedy, I. R. (2004). A rapid aflatoxin B1 ELISA: development and validation with reduced matrix effects for peanuts, corn, pistachio, and soybeans. Journal of Agricultural and Food Chemistry, 52(10), 2746–2755.CrossRefGoogle Scholar
  79. 79.
    Xiulan, S., Xiaolian, Z., Jian, T., Zhou, J., & Chu, F. (2005). Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. International Journal of Food Microbiology, 99(2), 185–194.CrossRefGoogle Scholar
  80. 80.
    Gerard, M., Chaubey, A., & Malhotra, B. (2002). Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 17(5), 345–359.CrossRefGoogle Scholar
  81. 81.
    Pandey, P., Datta, M., & Malhotra, B. (2008). Prospects of nanomaterials in biosensors. Analytical Letters, 41(2), 159–209.CrossRefGoogle Scholar
  82. 82.
    Solanki, P. R., Kaushik, A., Agrawal, V. V., & Malhotra, B. D. (2011). Nanostructured metal oxide-based biosensors. NPG Asia Materials, 3(1), 17–24.CrossRefGoogle Scholar
  83. 83.
    Ansari, A. A., Kaushik, A., Solanki, P., & Malhotra, B. (2008). Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications, 10(9), 1246–1249.CrossRefGoogle Scholar
  84. 84.
    Arya, S. K., Solanki, P. R., Datta, M., & Malhotra, B. D. (2009). Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosensors and Bioelectronics, 24(9), 2810–2817.CrossRefGoogle Scholar
  85. 85.
    Jacobs, C. B., Peairs, M. J., & Venton, B. J. (2010). Review: carbon nanotube based electrochemical sensors for biomolecules. Analytica Chimica Acta, 662(2), 105–127.CrossRefGoogle Scholar
  86. 86.
    Pumera, M. (2009). Electrochemistry of graphene: new horizons for sensing and energy storage. The Chemical Record, 9(4), 211–223.CrossRefGoogle Scholar
  87. 87.
    Molina, P. G., Zón, M. A., & Fernández, H. (2008). Novel studies about the electrooxidation of a deoxynivalenol (DON) mycotoxin reduction product adsorbed on glassy carbon and carbon paste electrodes. Electroanalysis, 20(15), 1633–1638.CrossRefGoogle Scholar
  88. 88.
    Hajian, R., & Ensafi, A. (2009). Determination of aflatoxins B1 and B2 by adsorptive cathodic stripping voltammetry in groundnut. Food Chemistry, 115(3), 1034–1037.CrossRefGoogle Scholar
  89. 89.
    Sc, L., Chen, J., Cao, H., Yao, D. S., & Liu, D. L. (2011). Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control, 22(1), 43–49.CrossRefGoogle Scholar
  90. 90.
    Jin, X., Jin, X., Chen, L., Jiang, J., Shen, G., & Yu, R. (2009). Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosensors and Bioelectronics, 24(8), 2580–2585.CrossRefGoogle Scholar
  91. 91.
    Jin, X., Jin, X., Liu, X., Chen, L., Jiang, J., Shen, G., et al. (2009). Biocatalyzed deposition amplification for detection of aflatoxin B1 based on quartz crystal microbalance. Analytica Chimica Acta, 645(1), 92–97.CrossRefGoogle Scholar
  92. 92.
    Liu, Y., Qin, Z., Wu, X., & Jiang, H. (2006). Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochemical Engineering Journal, 32(3), 211–217.CrossRefGoogle Scholar
  93. 93.
    Rameil, S., Schubert, P., Grundmann, P., Dietrich, R., & Märtlbauer, E. (2010). Use of 3-(4-hydroxyphenyl)propionic acid as electron donating compound in a potentiometric aflatoxin M1-immunosensor. Analytica Chimica Acta, 661(1), 122–127.CrossRefGoogle Scholar
  94. 94.
    Pohanka, M., Malir, F., Roubal, T., & Kuca, K. (2008). Detection of aflatoxins in capsicum spice using an electrochemical immunosensor. Analytical Letters, 41(13), 2344–2353.CrossRefGoogle Scholar
  95. 95.
    Parker, C. O., Lanyon, Y. H., Manning, M., Arrigan, D. W., & Tothill, I. E. (2009). Electrochemical immunochip sensor for aflatoxin M1 detection. Analytical Chemistry, 81(13), 5291–5298.CrossRefGoogle Scholar
  96. 96.
    Vig, A., Radoi, A., Muñoz-Berbel, X., Gyemant, G., & Marty, J.-L. (2009). Impedimetric aflatoxin M1 immunosensor based on colloidal gold and silver electrodeposition. Sensors and Actuators B: Chemical, 138(1), 214–220.CrossRefGoogle Scholar
  97. 97.
    Zaijun, L., Zhongyun, W., Xiulan, S., Yinjun, F., & Peipei, C. (2010). A sensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel–ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B1 in bee pollen. Talanta, 80(5), 1632–1637.CrossRefGoogle Scholar
  98. 98.
    Liu, Y., Qin, Z., Wu, X., & Jiang, H. (2006). Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochemical Engineering Journal, 32(3), 211–217.CrossRefGoogle Scholar
  99. 99.
    Piermarini, S., Micheli, L., Ammida, N., Palleschi, G., & Moscone, D. (2007). Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosensors and Bioelectronics, 22(7), 1434–1440.CrossRefGoogle Scholar
  100. 100.
    Owino, J. H., Arotiba, O. A., Hendricks, N., Songa, E. A., Jahed, N., Waryo, T. T., et al. (2008). Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors, 8(12), 8262–8274.CrossRefGoogle Scholar
  101. 101.
    Pemberton, R., Pittson, R., Biddle, N., Drago, G., & Hart, J. (2006). Studies towards the development of a screen printed carbon electrochemical immunosensor array for mycotoxins: a sensor for aflatoxin B1. Analytical Letters, 39(8), 1573–1586.CrossRefGoogle Scholar
  102. 102.
    Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., Mathur, R. & Malhotra, B. D. (2013). Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 185, 258–264.Google Scholar
  103. 103.
    Accepted in the special issue on Applied Biochemistry and Biotechnology 2014. doi: 10.1007/s12010-014-0965-4.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Bansi D. Malhotra
    • 1
    • 2
    Email author
  • Saurabh Srivastava
    • 2
  • Md. Azahar Ali
    • 2
  • Chandan Singh
    • 2
  1. 1.Department of BiotechnologyDelhi Technological UniversityDelhiIndia
  2. 2.Department of Science and Technology Center on Biomolecular Electronics, Biomedical Instrumentation SectionCSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations