Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1073–1091 | Cite as

Functional Nucleic-Acid-Based Sensors for Environmental Monitoring

  • Arghya Sett
  • Suradip Das
  • Utpal BoraEmail author
Article

Abstract

Efforts to replace conventional chromatographic methods for environmental monitoring with cheaper and easy to use biosensors for precise detection and estimation of hazardous environmental toxicants, water or air borne pathogens as well as various other chemicals and biologics are gaining momentum. Out of the various types of biosensors classified according to their bio-recognition principle, nucleic-acid-based sensors have shown high potential in terms of cost, sensitivity, and specificity. The discovery of catalytic activities of RNA (ribozymes) and DNA (DNAzymes) which could be triggered by divalent metallic ions paved the way for their extensive use in detection of heavy metal contaminants in environment. This was followed with the invention of small oligonucleotide sequences called aptamers which can fold into specific 3D conformation under suitable conditions after binding to target molecules. Due to their high affinity, specificity, reusability, stability, and non-immunogenicity to vast array of targets like small and macromolecules from organic, inorganic, and biological origin, they can often be exploited as sensors in industrial waste management, pollution control, and environmental toxicology. Further, rational combination of the catalytic activity of DNAzymes and RNAzymes along with the sequence-specific binding ability of aptamers have given rise to the most advanced form of functional nucleic-acid-based sensors called aptazymes. Functional nucleic-acid-based sensors (FNASs) can be conjugated with fluorescent molecules, metallic nanoparticles, or quantum dots to aid in rapid detection of a variety of target molecules by target-induced structure switch (TISS) mode. Although intensive research is being carried out for further improvements of FNAs as sensors, challenges remain in integrating such bio-recognition element with advanced transduction platform to enable its use as a networked analytical system for tailor made analysis of environmental monitoring.

Keywords

Functional nucleic acids Sensors Environmental monitoring 

References

  1. 1.
    Ligler, F. S. and Taitt, C.R. (2002) A Optical Biosensors: Present and Future Elsevier Science B.V.: Amsterdam.Google Scholar
  2. 2.
    Sadik, O. A., Wanekaya, A. K., & Andreescu, S. (2004). Journal of Environmental Monitoring, 6, 513–522.Google Scholar
  3. 3.
    Tondeur, Y., Niederhut, W. N., Campana, J. E., & Missler, S. R. (1987). Biomedical and Environmental Mass Spectrometry, 14(8), 449–456.Google Scholar
  4. 4.
    Breaker, R. R. (1997). Chemistry Review, 97, 371.Google Scholar
  5. 5.
    Kopylov, A. M., & Spiridonova, V. A. (2000). Molecular Biology, 34, 940.Google Scholar
  6. 6.
    Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). Cell, 35, 849–857.Google Scholar
  7. 7.
    Symons, R. H. (1992). Annual Review of Biochemistry, 61, 641–671.Google Scholar
  8. 8.
    Cech, T. R. (1983). Cell, 34, 713.Google Scholar
  9. 9.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., & Steitz, T. A. (2000). Science, 289, 902.Google Scholar
  10. 10.
    Pan, T., & Uhlenbeck, O. C. (1992). Nature, 358, 560–563.Google Scholar
  11. 11.
    Bartel, D. P., & Szostak, J. W. (1993). Science, 261, 1411–1418.Google Scholar
  12. 12.
    Ekland, E. H., Szostak, J. W., & Bartel, D. P. (1995). Science, 269, 364–370.Google Scholar
  13. 13.
    Chapman, K. B., & Szostak, J. W. (1995). Chemical Biology, 2, 325–333.Google Scholar
  14. 14.
    Ekland, E. H., & Bartel, D. P. (1996). Nature, 382, 373.Google Scholar
  15. 15.
    Tsukiji, S., Pattnaik, S. B., & Suga, H. (2003). Nature Structural Biology, 10, 713.Google Scholar
  16. 16.
    Conn, M. M., Prudent, J. R., & Schultz, P. G. (1996). Journal of the American Chemical Society, 118, 7012.Google Scholar
  17. 17.
    Chapple, K. E., Bartel, D. P., & Unrau, P. J. (2003). RNA, 9, 1208.Google Scholar
  18. 18.
    Feng, L. Y., Chen, Y., Ren, J. S., & Qu, X. G. (2011). Biomaterials, 32, 2930.Google Scholar
  19. 19.
    Kim, Y. J., Kim, Y. S., Niazi, J. H., & Gu, M. B. (2010). Bioprocess Biosyst. Engineering, 33, 31–37.Google Scholar
  20. 20.
    Nolte, A., Klussmann, S., Bald, R., Erdmann, V. A., & Fürste, J. P. (1996). Nature Biotechnology, 14(9), 1116–1119.Google Scholar
  21. 21.
    Klussmann, S., Nolte, A., Bald, R., Erdmann, V. A., & Fürste, J. P. (1996). Nature Biotechnology, 14(9), 1112–1115.Google Scholar
  22. 22.
    Williams, K. P., Liu, X. H., Schumacher, T. N., Lin, H. Y., Ausiello, D. A., Kim, P. S., & Bartel, D. P. (1997). Proceedings of the National Academy of Sciences, 94(21), 11285–11290.Google Scholar
  23. 23.
    Breaker, R. R. (1996). Current Opinion in Biotechnology, 7, 442–448.Google Scholar
  24. 24.
    Corey, M. J., & Corey, E. (1996). Proceedings of the National Academy of Sciences, 93, 11428–11434.Google Scholar
  25. 25.
    Breaker, R. R., & Joyce, G. F. (1995). Chem. Biol., 2, 655.Google Scholar
  26. 26.
    Bruesehoff, P. J., Li, J., Augustine, A. J., & Lu, Y. (2002). Comb. Chem., 5, 327.Google Scholar
  27. 27.
    Joyce, G. F. (2004). Annu. Rev. Biochem., 73, 791–836.Google Scholar
  28. 28.
    Silverman, S. K. (2005). Nuclear Acids Research, 33(19), 6151–6163.Google Scholar
  29. 29.
    Robertson, M. P., Hesselberth, J. R., & Ellington, A. D. (2001). RNA, 7(4), 513–523.Google Scholar
  30. 30.
    Purschke, W. G., Radtke, F., Kleinjung, F., & Klussmann, S. (2003). Nuclear Acids Research, 31(12), 3027–3032.Google Scholar
  31. 31.
    Duffus, J. H. (2002). “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74, 793–807.Google Scholar
  32. 32.
    Klopman, G. (1974). Generalized perturbation theory of chemical reactivity, Chemical Reactivity and Reaction Paths, New York (pp. 55–165). USA: John Wiley.Google Scholar
  33. 33.
    Frausto da Silva, J. J. R., & Williams, R. J. P. (1993). The biological chemistry of the elements: the inorganic chemistry of life. Oxford, UK: Oxford University Press.Google Scholar
  34. 34.
    Nieboer, E., & Richardson, D. H. S. (1980). Environmental Pollution (Series B), 1, 3–26.Google Scholar
  35. 35.
    Gloag, D. (1981). British Medical Journal (Clinical Research Ed.), 282, 41–44.Google Scholar
  36. 36.
    Liu, J., & Yi, L. (2003). Journal of the American Chemical Society, 125, 6642–6643.Google Scholar
  37. 37.
    Liu, J., & Yi, L. (2004). Chemistry of Materials, 16, 3231–3238.Google Scholar
  38. 38.
    Liu, J., & Yi, L. (2004). Journal of the American Chemical Society, 126, 12298–12305.Google Scholar
  39. 39.
    Swearingen, C. B., Wernette, D. P., Cropek, D. M., Lu, Y., Sweedler, J. V., & Bohn, P. W. (2005). Analytical Chemistry, 77, 442–448.Google Scholar
  40. 40.
    Chang, I. H., Tulock, J. J., Liu, J., Kim, W. S., Cannon, D. M., Jr., Lu, Y., Bohn, P. W., Sweedler, J. V., & Cropek, D. M. (2005). Environmental Science and Technology, 39, 3756–3761.Google Scholar
  41. 41.
    Wernette, D. P., Swearingen, C. B., Cropek, D. M., Lu, Y., Sweedler, J. V., & Bohn, P. W. (2006). Analyst, 131, 41–7.Google Scholar
  42. 42.
    Dalavoy, T. S., Wernette, D. P., Gong, M., Sweedler, J. V., Lu, Y., Flachsbart, B. R., Shannon, M. A., Bohn, P. W., & Cropek, D. M. (2008). Lab Chip, 8, 786–93.Google Scholar
  43. 43.
    Chen, X., Guan, H. L., He, Z. K., Zhou, X. D., & Hu, J. M. (2012). Analysis Methods, 4, 1619–1622.Google Scholar
  44. 44.
    Shen, L., Chen, Z., Li, Y., He, S., Xie, S., Xu, X., Liang, Z., Meng, X., Li, Q., Zhu, Z., Li, M., Le, X. C., & Shao, Y. (2008). Analytical Chemistry, 4, 6323–6328.Google Scholar
  45. 45.
    Mazumdar, D., Liu, J., Lu, G., Zhou, J., & Lu, Y. (2010). Chemical Communications, 46, 1416–1418.Google Scholar
  46. 46.
    Wang, F., Wu, Z., Lu, Y., Wang, J., Jiang, J. H., & Yu, R. Q. (2010). Annual Biochemistry, 405, 168–73.Google Scholar
  47. 47.
    Guo, L., Nie, D., Qiu, C., Zheng, Q., Wu, H., Ye, P., Hao, Y., Fu, F., & Chen, G. (2012). Biosensors and Bioelectronics, 35, 123–7.Google Scholar
  48. 48.
    Zhao, Y., Zhang, Q., Wang, W., & Jin, Y. (2013). Biosensors and Bioelectronics, 43, 231–236.Google Scholar
  49. 49.
    Gao, A., Tang, C. X., He, X. W., & Yin, X. B. (2013). Analyst, 138, 263–268.Google Scholar
  50. 50.
    Li, T., Wang, E., & Dong, S. (2010). Analytical Chemistry, 82, 1515–1520.Google Scholar
  51. 51.
    Pelossof, G., Tel-Vered, R., & Willner, I. (2012). Analytical Chemistry, 84, 3703–3709.Google Scholar
  52. 52.
    Zhuang, J., Fu, L., Xu, M., Zhou, Q., Chen, G., & Tang, D. (2013). Biosensors and Bioelectronics, 45, 52–7.Google Scholar
  53. 53.
    Nie, D., Wu, H., Zheng, Q., Guo, L., Ye, P., Hao, Y., Li, Y., Fu, F., & Guo, Y. (2012). Chemical Communications, 48, 1150–1152.Google Scholar
  54. 54.
    Li, H., Zhang, Q., Cai, Y., Kong, D. M., & Shen, H. X. (2012). Biosensors and Bioelectronics, 34, 159–164.Google Scholar
  55. 55.
    Smirnov, I., & Shafer, R. H. (2000). Journal of Molecular Biology, 296, 1–5.Google Scholar
  56. 56.
    Brenneman, K. L., Poduri, S., Stroscio, M. A., & Dutta, M. (2013). IEEE Sensors Journal, 13, 1783–1786.Google Scholar
  57. 57.
    Nicol, C. W. (2012). Minamata: a saga of suffering and hope”Japan times, 7, 10.Google Scholar
  58. 58.
    Ministry of the Environment, Govt of Japan, Minamata Disease The History and Measures; Chapter 2Google Scholar
  59. 59.
    Bakir, F., Rustam, H., Tikriti, S., Al-Damluji, S. F., & Shihristani, H. (1980). Postgraduate Medical Journal, 56, 1–10.Google Scholar
  60. 60.
    Carvalho, C. M., Chew, E. H., Hashemy, S. I., Lu, J., & Holmgren, A. (2008). Journal of Biological Chemistry, 283, 11913–23.Google Scholar
  61. 61.
    ATSDR - Mercury - Regulations and Advisories, p509-524.Google Scholar
  62. 62.
    Braman, R. (1971). Analytical Chemistry, 43, 1462–1467.Google Scholar
  63. 63.
    Ono, A., & Togashi, H. (2004). Angewandte Chemie International Edition in English, 43, 4300–4302.Google Scholar
  64. 64.
    Liu, J., & Lu, Y. (2007). Angewandte Chemie International Edition in English, 46, 7587–7590.Google Scholar
  65. 65.
    Chiang, C. K., Huang, C. C., Liu, C. W., & Chang, H. T. (2008). Analytical Chemistry, 80, 3716–3721.Google Scholar
  66. 66.
    Wang, J., & Liu, B. (2008). Chemical communications (Cambridge), 39, 4759–4761.Google Scholar
  67. 67.
    Liu, B. (2008). Biosensors and Bioelectronics, 24, 762–766.Google Scholar
  68. 68.
    Xue, X., Wang, F., & Liu, X. (2008). Journal of the American Chemical Society, 130, 3244–3245.Google Scholar
  69. 69.
    Li, D., Wieckowska, A., & Willner, I. (2008). Angewandte Chemie International Edition in English, 47, 3927–3931.Google Scholar
  70. 70.
    Wu, D., Zhang, Q., Chu, X., Wang, H., Shen, G., & Yu, R. (2010). Biosensors and Bioelectronics, 25, 1025–1031.Google Scholar
  71. 71.
    Xu, X., Wang, J., Jiao, K., & Yang, X. (2009). Biosensors and Bioelectronics, 24, 3153–3158.Google Scholar
  72. 72.
    Yu, C. J., Cheng, T. L., & Tseng, W. L. (2009). Biosensors and Bioelectronics, 25, 204–210.Google Scholar
  73. 73.
    Li, T., Dong, S., & Wang, E. (2009). Analytical Chemistry, 81, 2144–2149.Google Scholar
  74. 74.
    Li, T., Li, B., Wang, E., & Dong, S. (2009). Chemistry of Communications (Cambridge), 24, 3551–3553.Google Scholar
  75. 75.
    Hoang, C. V., Oyama, M., Saito, O., Aono, M., & Nagao, T. (2013). Science Reports, 3, 1175.Google Scholar
  76. 76.
    Brewer, G. J. (2010). Clinical Neurophysiology, 121, 459–460.Google Scholar
  77. 77.
    Casarett & Doull’s Toxicology, The basic science of poisons, Fifth Edition, Edited by Curtis D. Klassen, McGraw-Hill, New York. pp 715.Google Scholar
  78. 78.
    Edelstein DL. U.S. Geological Survey, Mineral commodity summaries, January 2013.Google Scholar
  79. 79.
    Environmental Protection Agency, National Primary Drinking Water Regulations for Lead and Copper, Federal Register / Vol. 65, No. 8 / Wednesday, January 12, 2000 / Rules and Regulations. pp. 1950-2015.Google Scholar
  80. 80.
    Carmi, N., Shultz, L. A., & Breaker, R. R. (1996). Chemical Biology, 3, 1039–1046.Google Scholar
  81. 81.
    Carmi, N., Balkhi, S. R., & Breaker, R. R. (1998). Proceedings of the National Academy of Sciences, 95, 2233–2237.Google Scholar
  82. 82.
    Carmi, N., & Breaker, R. R. (2001). Bioorganic and Medicinal Chemistry, 9, 2589–2600.Google Scholar
  83. 83.
    Liu, J., & Lu, Y. (2007). Journal of the American Chemical Society, 129, 9838–9839.Google Scholar
  84. 84.
    Zuo, P., Yin, B. C., & Ye, B. C. (2009). Biosensors and Bioelectronics, 25, 935–939.Google Scholar
  85. 85.
    Wang, Y., Yang, F., & Yang, X. (2010). Nanotechnology, 21, 205502.Google Scholar
  86. 86.
    Su, Y. T., Lan, G. Y., Chen, W. Y., & Chang, H. T. (2010). Analytical Chemistry, 82, 8566–8572.Google Scholar
  87. 87.
    Miao, X., Ling, L., Cheng, D., & Shuai, X. (2012). Analyst, 137, 3064–3069.Google Scholar
  88. 88.
    Fang, Z., Huang, J., Lie, P., Xiao, Z., Ouyang, C., Wu, Q., Wu, Y., Liu, G., & Zeng, L. (2010). Chemical communications (Cambridge), 46, 9043–9045.Google Scholar
  89. 89.
    Zhang, L., Zhu, J., Ai, J., Zhou, Z., Jia, X., & Wang, E. (2013). Biosensors and Bioelectronics, 39, 268–273.Google Scholar
  90. 90.
    Yin, B. C., Ye, B. C., Tan, W., Wang, H., & Xie, C. C. (2009). Journal of the American Chemical Society, 131, 14624–14625.Google Scholar
  91. 91.
    Chen, Z., Li, L., Mu, X., Zhao, H., & Guo, L. (2011). Talanta, 85, 730–735.Google Scholar
  92. 92.
    Lin, Z., Li, X., & Kraatz, H. B. (2011). Analytical Chemistry, 83, 6896–6901.Google Scholar
  93. 93.
    Shi, L., Liang, G., Li, X. H., & Liu, X. H. (2012). Analytical Methods, 4, 1036–1040.Google Scholar
  94. 94.
    Adriaens P, Vannela R, (2010) Dnazymes and sensors incorporating the Same, US Patent No - US 7,709,619 B2.Google Scholar
  95. 95.
    Wu, Y., Zhan, S., Wang, F., He, L., Zhi, W., & Zhou, P. (2012). Chemical communications (Cambridge), 48, 4459–4461.Google Scholar
  96. 96.
    Wu, Y., Liu, L., Zhan, S., Wang, F., & Zhou, P. (2012). Analyst, 137, 4171–4178.Google Scholar
  97. 97.
    Liu, J., Brown, A. K., Meng, X., Cropek, D. M., Istok, J. D., Watson, D. B., & Lu, Y. (2007). Proceedings of the National Academy of Science, 104, 2056–2061.Google Scholar
  98. 98.
    Tang, Q., Yuan, Y., Xiao, X., Guo, P., Hu, J., Ma, D., & Gao, Y. (2013). Microchimica Acta, 180, 1059–1064.Google Scholar
  99. 99.
    Wu, P., Hwang, K., Lan, T., & Lu, Y. (2013). Journal of the American Chemical Society, 135, 5254–5257.Google Scholar
  100. 100.
    Sett, A., Das, S., Sharma, P., & Bora, U. (2012). Open Journal of Applied Biosensors, 1, 9–19.Google Scholar
  101. 101.
    Fana, L., Zhaoa, G., Shia, H., Liua, M., & Lia, Z. (2013). Biosensors and Bioelectronics, 43, 12–18.Google Scholar
  102. 102.
    Shim, W. B., Mun, H., Joung, H.-A., Ofori, J. A., Chung, D.-H., & Kim, M. G. (2014). Food Control, 36(1), 30–35.Google Scholar
  103. 103.
    Bonel, L., Vidal, J. C., Duato, P., & Castillo, J. R. (2011). Biosensors and Bioelectronics, 26(7), 325–9.Google Scholar
  104. 104.
    Vivekananda, J.(2003). Methods and compositions for aptamers against anthrax. US Patent no- US6569630 B1.Google Scholar
  105. 105.
    Robertson, M. P., & Ellington, A. D. (2000). Nuclear Acids Research, 28(8), 1751–1759.Google Scholar
  106. 106.
    Liu, J., Cao, Z., & Lu, Y. (2009). Chemistry Reviews, 109, 1948–1998.Google Scholar
  107. 107.
    Silva, C., & Walter, N. G. (2009). RNA, 15(1), 76–84.Google Scholar
  108. 108.
    Liu, J., & Lu, Y. (2004). Analytical Chemistry, 76, 1627–32.Google Scholar
  109. 109.
    Knudsen, S. M., Lee, J., Ellington, A. D., & Savran, C. A. (2006). Journal of the American Chemical Society, 128(50), 15936–15937.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Bioengineering Research Laboratory, Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Mugagen Laboratories Pvt. Ltd., Technology Incubation CentreIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations