Skip to main content
Log in

Template-Assisted Electrochemical Growth of Polypyrrole Nanotubes for Development of High Sensitivity Glucose Biosensor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, we report the growth of polypyrrole (PPy) nanotube arrays using template-assisted electrochemical polymerization to fabricate enzymatic glucose biosensors. The PPy nanotubes were grown on platinum-coated alumina membranes (Anodisc™s). By varying the polymerization time during the potentiostatic electropolymerization, the size/diameter of the PPy nanotubes were controlled, leading to changes in the subsequent enzyme immobilization (via physical adsorption). Enzyme electrode thus fabricated resulted in to the optimum sensitivity of 18.6 mA cm−2 M−1, a wide range of linear operation (0.25–20 mM) and the lowest detection limit of 0.25 mM glucose concentration for the biosensor with the polymerization time of 40 s. The effect of polymerization duration on the sensitivity has been explained on the basis of porosity and enzyme-loading capacity of polymerized electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vasudevan, D. M., & Sreekumari, S. (2005). In J. Brothers (Ed.), Textbook of biochemistry for medical students. Medical Publishers: New Delhi.

    Google Scholar 

  2. MacLeod, A. J. (1973) Instrumental methods of food analysis. ed. Elek Science, London.

  3. Newman, J. D., & Turner, A. P. F. (2005). Home blood glucose biosensors: a commercial perspective. Biosensors and Bioelectronics, 20, 2435–2453.

    Article  CAS  Google Scholar 

  4. Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825.

    Article  CAS  Google Scholar 

  5. Prodromidis, M. I., & Karayannis, M. I. (2002). Enzyme based amperometric biosensors for food analysis. Electroanalysis, 14, 241–261.

    Article  CAS  Google Scholar 

  6. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  7. Guimard, N. K., Gomez, N., & Schmidt, C. E. (2007). Conducting polymers in biomedical engineering. Progress in Polymer Science, 32, 876–921.

    Article  CAS  Google Scholar 

  8. Rajesh, P. S. S., Takashima, W., & Kaneto, K. (2004). Development of an amperometric biosensor based on a redox-mediator-doped polypyrrole film. Journal of Applied Polymer Science, 93, 927–933.

    Article  CAS  Google Scholar 

  9. Vidal, J.-C., Garcia-Ruiz, E., & Castillo, J.-R. (2003). Recent Advances in electropolymerized conducting polymers in amperometric biosensors. Microchimica Acta, 143, 93–111.

    Article  CAS  Google Scholar 

  10. Gurunathan, K., Murugan, A. V., Marimuthu, R., Mulik, U. P., & Amalnerkar, D. P. (1999). Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Materials Chemistry and Physics, 61, 173–191.

    Article  CAS  Google Scholar 

  11. Cosnier, S. and Karyakin, A. (2010) Electropolymerization: concepts, materials and applications. ed. Wiley-VCH Verlag GmbH & Co. KGaA Germany.

  12. Wallace, G. G., Tsekouras, G. and Wang, C. (2010), in Electropolymerization, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 215-240.

  13. Huang, J., Wang, K., & Wei, Z. (2010). Conducting polymer nanowire arrays with enhanced electrochemical performance. Journal of Materials Chemistry, 20, 1117–1121.

    Article  CAS  Google Scholar 

  14. Li, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38, 2397–2409.

    Article  CAS  Google Scholar 

  15. Ekanayake, E. M. I. M., Preethichandra, D. M. G., & Kaneto, K. (2007). Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosensors and Bioelectronics, 23, 107–113.

    Article  CAS  Google Scholar 

  16. Ekanayake, E. M. I., Preethichandra, D. M. G., & Kaneto, K. (2008). Effect of glucose oxidase immobilizing techniques on performances of nano scale polypyrrole glucose biosensors. Japanese Journal of Applied Physics, 47, 1321–1324.

    Article  CAS  Google Scholar 

  17. Raicopol, M., Pruna, A., Damian, C., & Pilan, L. (2013). Functionalized single-walled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Research Letters, 8, 316–323.

    Article  Google Scholar 

  18. Ramanavičius, A., Ramanavičienė, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer—polypyrrole. Electrochimica Acta, 51, 6025–6037.

    Article  Google Scholar 

  19. Debiemme-Chouvy, C. (2009). Template-free one-step electrochemical formation of polypyrrole nanowire array. Electrochemistry Communications, 11, 298–301.

    Article  CAS  Google Scholar 

  20. Martin, C. R. (1995). Template synthesis of electronically conductive polymer nanostructures. Accounts of Chemical Research, 28, 61–68.

    Article  CAS  Google Scholar 

  21. Chakarvarti, S. K., & Vetter, J. (1998). Template synthesis—a membrane based technology for generation of nano-/micro materials: a review. Radiation Measurements, 29, 149–159.

    Article  CAS  Google Scholar 

  22. Xiao, R., Cho, S. I., Liu, R., & Lee, S. B. (2007). Controlled electrochemical synthesis of conductive polymer nanotube structures. Journal of the American Chemical Society, 129, 4483–4489.

    Article  CAS  Google Scholar 

  23. Small, E. W. (1991). in Topics in fluorescence spectroscopy. ed. Plenum, New York.

  24. Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45.

    Article  CAS  Google Scholar 

  25. Wilson, K. and Walker, J. M. (2005) Principles and techniques of biochemistry and molecular biology. ed. Cambridge University Press, United Kingdom.

  26. Wrolstad, R. (2001). Current protocols in food analytical chemistry. ed. Wiley, New York.

  27. Holland, J. T., Harper, J. C., Dolan, P. L., Manginell, M. M., Arango, D. C., Rawlings, J. A., Apblett, C. A., & Brozik, S. M. (2012). Rational redesign of glucose oxidase for improved catalytic function and stability. PloS One, 7, e37924.

    Article  CAS  Google Scholar 

  28. Kotz, J. C. and Purcell, K. F. (1987). Chemistry & chemical reactivity ed. Saunders College Pub., Philadelphia.

  29. Heinze, J., Frontana-Uribe, B. A., & Ludwigs, S. (2010). Electrochemistry of conducting polymers—persistent models and new concepts. Chemical Reviews, 110, 4724–4771.

    Article  CAS  Google Scholar 

  30. Hernández-Pérez, T., Morales, M., Batina, N., & Salmón, M. (2001). Effect of the electrosynthesis method on the surface morphology of the polypyrrole film—an atomic force microscopy study. Journal of The Electrochemical Society, 148, C369–C375.

    Article  Google Scholar 

  31. Zhao, K., Zhuang, S., Chang, Z., Songm, H., Dai, L., He, P., & Fang, Y. (2007). Amperometric glucose biosensor based on platinum nanoparticles combined aligned carbon nanotubes electrode. Electroanalysis, 19, 1069–1074.

    Article  CAS  Google Scholar 

  32. Liu, L., Jia, N., Zhou, Q., & Jiang, Z. (2007). Electrochemically fabricated nanoelectrode ensembles for glucose biosensors. Materials Science and Engineering C, 27, 57–60.

    Article  Google Scholar 

  33. Xu, G. Q., Lv, J., Zheng, Z. X. and Wu, Y. C. (2012). Polypyrrole (PPy) nanowire arrays entrapped with glucose oxidase biosensor for glucose detection. Nano/Micro Engineered and Molecular Systems (NEMS), 2012 7th IEEE International Conference on, pp. 511-514.

  34. Rabeah, K. A., & Marks, R. S. (2009). Impedance study of the hybrid molecule alginate-pyrrole: demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor. Sensors and Actuators B, 136, 516–522.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors P. A. P. is grateful to FESEM, Fluorescence and Potentiostat/Galvanostat facilities equipped at the Sophisticated Instrument Centre, IIT Indore. P. A. P. would also like to thank Dr. Mukul Gupta (University Grants Commission Department of Atomic Energy (UGC DAE) Consortium for Scientific Research Indore (M. P.), India) for the usage of the DC magnetron sputtering system. P. A. P. would further like to thank the Ministry of Human Resource and Development (MHRD), India for providing the Teaching Assistantship (TA). Author V. S. would like to thank director of IIT Indore for providing the seed grant for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipul Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palod, P.A., Pandey, S.S., Hayase, S. et al. Template-Assisted Electrochemical Growth of Polypyrrole Nanotubes for Development of High Sensitivity Glucose Biosensor. Appl Biochem Biotechnol 174, 1059–1072 (2014). https://doi.org/10.1007/s12010-014-0988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0988-x

Keywords

Navigation