Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1010–1020 | Cite as

Sensitive and Reliable Ascorbic Acid Sensing by Lanthanum Oxide/Reduced Graphene Oxide Nanocomposite

  • Navin Kumar Mogha
  • Vikrant Sahu
  • Meenakshi Sharma
  • Raj Kishore SharmaEmail author
  • Dhanraj T. MasramEmail author
Article

Abstract

A simple strategy for the detection and estimation of ascorbic acid (AA), using lanthanum oxide–reduced graphene oxide nanocomposite (LO/RGO) on indium tin oxide (ITO) substrate, is reported. LO/RGO displays high catalytic activity toward the oxidation of AA, and the synergism between lanthanum oxide and reduced graphene oxide was attributed to the successful and efficient detection. Detection mechanism and sensing efficacy of LO/RGO nanocomposite are investigated by electrochemical techniques. Chronoamperometric results under optimal conditions show a linear response range from 14 to 100 μM for AA detection. Commercially available vitamin C tablets were also analyzed using the proposed LO/RGO sensor, and the remarkable recovery percentage (97.64–99.7) shows the potential application in AA detection.

Keywords

Lanthanum oxide Reduced graphene nanocomposite Ascorbic acid Electrochemical sensor 

Notes

Acknowledgments

We greatly acknowledge Department of Science and Technology (SERB), India for funding through the project no-SR/FT/CS-123/2010 dated 08/02/2012. We are also Thankful to the CSIR (Council of Scientific & Industrial Research) FOR Senior research fellowship to VS.

References

  1. 1.
    Klebanoff, S., Dziewiatkowski, D., & Okinaka, G. (1958). Journal of General Physiology, 42, 303–318.CrossRefGoogle Scholar
  2. 2.
    Eipper, B. A., Mains, R. E., & Glembotski, C. C. (1983). Proceedings of the National Academy of Sciences of the United States of America, 80, 5144–5148.CrossRefGoogle Scholar
  3. 3.
    Davies, M. B., Austin, J., & Partridge, D. A. (1991). Vitamin C: its chemistry and biochemistry. Cambridge: The Royal Society of Chemistry.Google Scholar
  4. 4.
    Hua, G., Guo, Y., Xue, Q., & Shao, S. (2010). Electrochimica Acta, 55, 2799–2804.CrossRefGoogle Scholar
  5. 5.
    Wu, T., Guan, Y., & Ye, J. (2007). Food Chemistry, 100, 1573–1579.CrossRefGoogle Scholar
  6. 6.
    Wu, X., Diao, Y., Sun, C., Yang, J., Wang, Y., & Sun, S. (2003). Talanta, 59, 95–99.CrossRefGoogle Scholar
  7. 7.
    Anastos, N., Barnett, N. W., Hindson, B. J., Lenehan, C. E., & Lewis, S. W. (2004). Talanta, 64, 130–134.CrossRefGoogle Scholar
  8. 8.
    Nováková, L., Solichová, D., & Solich, P. (2009). Journal of Chromatography. A, 1216, 4574–4581.CrossRefGoogle Scholar
  9. 9.
    Kulys, J., & D’Costa, E. J. (1991). Analytica Chimica Acta, 243, 173–178.CrossRefGoogle Scholar
  10. 10.
    Kumar, S. A., Lo, P. H., & Chen, S. M. (2008). Biosensors and Bioelectronics, 24, 518–523.CrossRefGoogle Scholar
  11. 11.
    Ragupathy, D., Gopalan, A. I., & Lee, K. P. (2010). Sensors and Actuators, B, 143, 696–703.CrossRefGoogle Scholar
  12. 12.
    Wen, D., Guo, S., Dong, S., & Wang, E. (2010). Biosensors and Bioelectronics, 26, 1056–1061.CrossRefGoogle Scholar
  13. 13.
    Qiu, S., Gao, S., Liu, Q., Lin, Z., Qiu, B., & Chen, G. (2011). Biosensors and Bioelectronics, 26, 4326–4330.CrossRefGoogle Scholar
  14. 14.
    Prieto, F., Coles, B. A., & Richard, G. (1998). Journal of Physical Chemistry B, 102, 7442–7447.CrossRefGoogle Scholar
  15. 15.
    Raj, C. R., Tokuda, K., & Ohsaka, T. (2001). Bioelectrochemistry, 53, 183–191.CrossRefGoogle Scholar
  16. 16.
    Sun, C. L., Lee, H. H., Yang, J. M., & Wu, C. C. (2011). Biosensors and Bioelectronics, 26, 3450–3455.CrossRefGoogle Scholar
  17. 17.
    Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Science, 306, 666–669.CrossRefGoogle Scholar
  18. 18.
    Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K., & Poh, H. L. (2010). Trends in Analytical Chemistry, 29, 954–965.CrossRefGoogle Scholar
  19. 19.
    Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. (2010). Electroanalysis, 22, 1027–1036.CrossRefGoogle Scholar
  20. 20.
    Valange, S., Beauchaud, A., Barrault, J., Gabelica, Z., & Daturi, M. (2007). Journal of Catalysis, 251, 113–122.CrossRefGoogle Scholar
  21. 21.
    Wang, L. G., Ma, Y. B., Wang, Y., Liu, S. M., & Deng, Y. Q. (2011). Catalysis Communications, 12, 1458–1462.CrossRefGoogle Scholar
  22. 22.
    Montemor, M. F., & Ferreira, M. G. S. (2008). Surface and Coating Technology, 202, 4766–4774.CrossRefGoogle Scholar
  23. 23.
    Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., et al. (2010). ACS Nano, 4, 4806–4814.CrossRefGoogle Scholar
  24. 24.
    Bailes, M., Bordiga, S., Stone, F. S., & Zecchina, A. (1996). Journal of the Chemical Society, Faraday Transactions, 92, 4675–4682.CrossRefGoogle Scholar
  25. 25.
    Wang, H., Ren, F., Yue, R., Wang, C., Zhai, C., & Du, Y. (2014). Colloids Surface A, 448, 181–185.CrossRefGoogle Scholar
  26. 26.
    Wu, G. H., Wu, Y. F., Liu, X. W., Rong, M. C., Chen, X. M., & Chen, X. (2012). Analytica Chimica Acta, 745, 33–37.CrossRefGoogle Scholar
  27. 27.
    Sheng, Z. H., Zheng, X. Q., Xu, J. Y., Bao, W. J., Wang, F. B., & Xia, X. H. (2012). Biosensors and Bioelectronics, 34, 125–131.CrossRefGoogle Scholar
  28. 28.
    Prieto, F., Coles, B. A., & Compton, R. G. (1998). Journal of Physical Chemistry B, 102, 7442–7447.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia
  2. 2.Dr. B.R. Ambedkar Center for Biomedical ResearchUniversity of DelhiDelhiIndia

Personalised recommendations