Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 998–1009 | Cite as

Flow Injection Analysis Biosensor for Urea Analysis in Urine Using Enzyme Thermistor

  • Geetesh K. Mishra
  • Atul Sharma
  • Kanchanmala Deshpande
  • Sunil BhandEmail author


There is a need for analytical methods capable of monitoring urea levels in urine for patients under clinical monitoring to appraise renal function. Herein, we present a practical method to quantify levels of urea in human urine samples using flow injection analysis-enzyme thermistor (FIA-ET) biosensor. The biosensor comprises a covalently immobilized enzyme urease (Jack bean) on aminated silica support, which selectively hydrolyzes the urea present in the sample. Under optimized conditions, the developed biosensor showed a linear response in the range of 10–1,000 mM, R 2 = 0.99, and response time of 90 s in 100 mM phosphate buffer (PB) (flow rate of 0.5 mL/min, sample volume of 0.1 mL, and pH 7.2). The urea-spiked human urine samples showed minimal matrix interference in the range of 10–1,000 mM. Recoveries were obtained (92.26–99.80 %) in the spiked urine samples. The reliability and reproducibility of the developed biosensor were found satisfactory with percent relative standard deviation (% RSD) = 0.741. The developed biosensor showed excellent operational stability up to 30 weeks with 20 % loss in original response when used continuously at room temperature. These results indicate that the developed biosensor could be very effective to detect low and high levels of urea in urine samples.


Urea Urine Enzyme thermistor Immobilized urease Aminated silica gel 



This work is funded by the National Agriculture Innovation Project (NAIP) C4/C30032, ICAR, and The World Bank. We offer our sincere thanks to Prof. Bengt Danielsson, Acromed AB, Lund, Sweden for scientific interaction and providing the enzyme thermistor at BITS, Pilani-KK Birla Goa Campus. We also offer our sincere thanks to Dr. Rahul Mohan, NCAOR Goa for recording the SEM micrographs.


  1. 1.
    Alizadeh, T., & Akbari, A. (2013). Biosensors and Bioelectronics, 43, 321–327.CrossRefGoogle Scholar
  2. 2.
    Gutiérrez, M., Alegret, S., & Valle, M. D. (2007). Biosensors and Bioelectronics, 22, 2171–2178.CrossRefGoogle Scholar
  3. 3.
    Ali, A., AlSalhi, M. S., Atif, M., Ansari, A. A., Israr, M. Q., Sadaf, J. R., et al. (2013). Journal of Physics: Conference Series, 414, 120–124.Google Scholar
  4. 4.
    Sumana, G., Das, M., Srivastava, S., & Malhotra, B. D. (2010). Thin Solid Films, 519, 1187–1191.CrossRefGoogle Scholar
  5. 5.
    Czauderna, M., & Kowalczyk, J. (2012). Czech Journal Animal Science, 57(1), 19–27.Google Scholar
  6. 6.
    Goeyens, L., Kindermans, N., Yusuf, M. A., & Elskens, M. (1998). Estuarine, Coastal and Shelf Science, 47, 415–418.CrossRefGoogle Scholar
  7. 7.
    Jensen, P. S., Bak, J., Ladefoged, S., & Andersson, S. (2004). Spectrochimica Acta Part A, 60, 899–905.CrossRefGoogle Scholar
  8. 8.
    Clark, S., Francis, P. S., Conlan, X. A., & Barnett, N. W. (2007). Journal of Chromatography A, 161(1–2), 207–213.CrossRefGoogle Scholar
  9. 9.
    Koncki, R., Radomska, A., & Glab, S. (2000). Analytica Chimica Acta, 418, 213–224.CrossRefGoogle Scholar
  10. 10.
    Jdanova, S., Poyard, S., Soldatkin, A. P., Renault, N. J., & Martelet, C. (1996). Analytica Chimica Acta, 321, 35–40.CrossRefGoogle Scholar
  11. 11.
    Pizzariello, A., Stredansky, M., Stredanska, S., & Stainslav, M. (2001). Talanta, 54, 763–772.CrossRefGoogle Scholar
  12. 12.
    Adams, R. E., & Carr, P. W. (1978). Analytical Chemistry, 50, 944.CrossRefGoogle Scholar
  13. 13.
    Danielsson, B., Mattiasson, B., & Mosbach, K. (1976). Pure and Applied Chemistry, 51, 1443–1457.Google Scholar
  14. 14.
    Bjarnason, B., Johansson, P., & Johansson, G. (1998). Analytica Chimica Acta, 372, 341–348.CrossRefGoogle Scholar
  15. 15.
    Chen, Y., Andersson, A., Mecklenburg, M., Xie, B., & Zhou, Y. (2011). Biosensors and Bioelectronics, 29, 115–118.CrossRefGoogle Scholar
  16. 16.
    Raghvan, V., Ramanathan, K., Sundaram, P. V., & Danielsson, B. (1999). Clinica Chimica Acta, 289, 145–158.CrossRefGoogle Scholar
  17. 17.
    Pirvutoiu, S., Dey, E., Bhand, S., Ciucu, A., Magearu, B., & Danielsson, B. (2002). Roumanian Biotechnology Letters, 7, 975–986.Google Scholar
  18. 18.
    Bhand, S. G., Soundararajan, S., Wärnmark, I. S., Milea, J. S., Dey, E. S., Yakovleva, M., et al. (2010). Analytica Chimica Acta, 668, 13–18.CrossRefGoogle Scholar
  19. 19.
    Mishra, G. K., Mishra, R. K., & Bhand, S. (2010). Biosensors and Bioelectronics, 26, 1560–1564.CrossRefGoogle Scholar
  20. 20.
    Jha, S. K., Topkar, A., & D’Souza, S. F. (2008). Journal of Biochemical and Biophysical Methods, 70, 1145–1150.CrossRefGoogle Scholar
  21. 21.
    Eggenstein, C., Borchardt, M., Diekmann, C., Grundig, B., Dumschat, C., Cammann, K., et al. (1999). Biosensors & Bioelectronics, 14, 33–41.CrossRefGoogle Scholar
  22. 22.
    Verma, N., Minhas, R. K., & Kumar, S. (2012). Advances in Applied Science Research, 3(1), 135–141.Google Scholar
  23. 23.
    Pizzariello, A., Stredansky, M., Stredanska, S., & Miertus, S. (2001). Talanta, 54, 763–772.CrossRefGoogle Scholar
  24. 24.
    Morishita, Y., Tsuji, K., Nakane, K., Soya, Y., Fukatsu, T., Yoneda, K., et al. (1997). Clinical Chemistry, 43(10), 1932–1936.Google Scholar
  25. 25.
    Orsonneau, J. L., Massoubre, C., Cabanes, M., & Lustenberger, P. (1992). Clinical Chemistry, 38(5), 619–623.Google Scholar
  26. 26.
    Tiwari, A., Aryal, S., Pilla, S., & Gong, S. (2009). Talanta, 78, 1401–1407.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Geetesh K. Mishra
    • 1
  • Atul Sharma
    • 1
  • Kanchanmala Deshpande
    • 1
    • 2
  • Sunil Bhand
    • 1
    Email author
  1. 1.Biosensor Laboratory, Department of ChemistryBirla Institute of Technology and ScienceGoaIndia
  2. 2.Department of ChemistryGoa UniversityGoaIndia

Personalised recommendations