Skip to main content

Advertisement

Log in

Biofunctionalized Gold Nanoparticle-Conducting Polymer Nanocomposite Based Bioelectrode for CRP Detection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An electrochemical impedance immunosensing method for the detection and quantification of C-reactive protein (αCRP) in phosphate buffered saline (PBS) is demonstrated. The protein antibody, Ab-αCRP, has been covalently immobilized on a platform comprising of electrochemically deposited 3-mercaptopropionic acid-capped gold nanoparticles Au(MPA)-polypyrrole (PPy) nanocomposite film of controlled thickness onto an indium tin oxide-coated glass plate. The free carboxyl groups present on the nanocomposite film have been used to site-specifically immobilize the Ab-αCRP biomolecules through a stable acyl amino ester intermediate generated by N-(3-dimethylaminopropyl)-N′-ethyl carbodiimide hydrochloride and N-hydroxysuccinimide. The nanocomposite film was characterized by atomic force microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and electrochemical techniques. The bioelectrode was electrochemically analyzed using modified Randles circuit in terms of constant phase element (CPE), electron transfer resistance (R et), and Warburg impedance (Z w). The value of n, a CPE exponent used as a gauge of heterogeneity, for the Au-PPy nanocomposite film was found to be 0.56 which is indicative of a rather rough morphology and porous structure. A linear relationship between the increased ∆R et values and the logarithmic value of protein antigen, Ag-αCRP, concentrations was found in the range of 10 ng to 10 μg mL−1 with a R et sensitivity of 46.27 Ω cm2/decade of [Ag-αCRP] in PBS (pH 7.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ates, M. (2013). Materials Science and Engineering: C, 33, 1853–1859.

    Article  CAS  Google Scholar 

  2. Yuan, L., Wei, W., & Liu, S. (2012). Biosensors and Bioelectronics, 38, 79–85.

    Article  CAS  Google Scholar 

  3. Revin, S. B., & John, S. A. (2012). Analyst, 137, 209–215.

    Article  CAS  Google Scholar 

  4. Park, S. J., Kwon, O. S., & Jan, J. (2013). Chemical Communications, 49, 4673–4675.

    Article  CAS  Google Scholar 

  5. Singh, M., Kathuroju, P. K., & Jampana, N. (2009). Sensors and Actuators, B, 143, 430–443.

    Article  Google Scholar 

  6. Jia, Y., Xiao, P., He, H., Yao, J., Liu, F., Wang, Z., et al. (2012). Applied Surface Science, 258, 6627–6631.

    Article  CAS  Google Scholar 

  7. Dong, Z. H., Wei, Y. L., Shi, W., & Zhang, G. A. (2011). Materials Chemistry and Physics, 131, 529–534.

    Article  CAS  Google Scholar 

  8. Shi, W., & Ma, Z. (2011). Biosensors and Bioelectronics, 26, 3068–3071.

    Article  CAS  Google Scholar 

  9. Cao, X., Ye, Y., & Liu, S. (2011). Analytical Biochemistry, 417, 1–16.

    Article  CAS  Google Scholar 

  10. Rajesh, Sharma, V., Mishra, S. K., & Biradar, A. M. (2012). Materials Chemistry and Physics, 132, 22–28.

    Article  CAS  Google Scholar 

  11. Qiu, L., Peng, Y., Liu, B., Lin, B., Peng, Y., Malik, M. J., et al. (2012). Applied Catalysis A, 413, 230–237.

    Article  Google Scholar 

  12. Ledue, T., & Rifai, N. (2003). Clinical Chemistry, 49, 1258–1271.

    Article  Google Scholar 

  13. Kindt, T., Osborne, B., & Golsby, R. (2007). Kuby immunology (6th ed.). New York: W.H. Freeman.

    Google Scholar 

  14. Algarra, M., Gomes, D., & Esteves da Silva, J. C. G. (2012). Clinica Chimica Acta, 415, 1–9.

    Article  Google Scholar 

  15. McDonnell, B., Hearty, S., Leonard, P., & O′ Kennedy, R. (2009). Clinical Biochemistry, 42, 549–561.

    Article  CAS  Google Scholar 

  16. Lin, K. C., Kunduru, V., Bothara, M., Rege, K., Prasad, S., & Ramakrishna, B. L. (2010). Biosensors and Bioelectronics, 25, 2336–2342.

    Article  CAS  Google Scholar 

  17. Yang, T., Wang, S., Jin, H., Bao, W., Huang, S., & Wang, J. (2013). Sensors and Actuators, B, 178, 310–315.

    Article  CAS  Google Scholar 

  18. Suprun, E. V., Shilovskaya, A. L., Lisitsa, A. V., Bulko, T. V., Shumyantseva, V. V., & Archakov, A. I. (2011). Electroanalysis, 23, 1051–1057.

    Article  CAS  Google Scholar 

  19. Xu, H., Wang, L., Ye, H., Yu, L., Zhu, X., Lin, Z., et al. (2012). Chemical Communications, 48, 6390–6392.

    Article  CAS  Google Scholar 

  20. Guo, X., Kulkarni, A., Doepke, A., Halsall, B. H., Iyer, S., & Heineman, W. R. (2012). Analytical Chemistry, 84, 241–246.

    Article  CAS  Google Scholar 

  21. Wei, Q., Zhao, Y., Du, B., Wu, D., Li, H., & Yang, M. (2012). Food Chemistry, 134, 1601–1606.

    Article  CAS  Google Scholar 

  22. Shi, Y., Wang, H., & Cai, N. (2012). Journal of Power Sources, 208, 24–34.

    Article  CAS  Google Scholar 

  23. Sen, T., & Patra, A. (2009). Journal of Physical Chemistry C, 113, 13125–13132.

    Article  CAS  Google Scholar 

  24. Shamsipur, M., Asgari, M., Maragheh, M. G., & Moosavi-Movahedi, A. A. (2012). Bioelectrochemistry, 83, 31–37.

    Article  Google Scholar 

  25. Davies, T. J., Banks, C. E., & Compton, R. G. (2005). Journal of Solid State Electrochemistry, 9, 797–808.

    Article  CAS  Google Scholar 

  26. Compton, R. G., & Banks, C. E. (2007). Understanding voltammetry. London: World Scientific.

    Book  Google Scholar 

  27. Solomon, A., Mamuru, Kenneth, I., & Ozoemena, I. (2010). Electroanalysis, 22, 985–994.

    Article  Google Scholar 

  28. Bryan, T., Luo, X., Bueno, P. R., & Davis, J. J. (2013). Biosensors and Bioelectronics, 39, 94–98.

    Article  CAS  Google Scholar 

  29. Zhu, Jie, J., Xu, Zhong, J., He, Tao, J., et al. (2003). Analytical Letters, 36, 1547–1556.

    Article  CAS  Google Scholar 

  30. Quershi, A., Gurbuz, Y., Kang, W. P., & Davidson, J. L. (2009). Biosensors and Bioelectronics, 25, 877–882.

    Article  CAS  Google Scholar 

  31. Zhou, F., Lu, M., Wang, W., Bian, Z. P., Zhang, J. R., & Zhu, J. J. (2010). Clinical Chemistry, 56, 1701–1707.

    Article  CAS  Google Scholar 

  32. Puri, N., Tanwar, V. K., Sharma, V., Ahuja, T., Biradar, A. M., & Rajesh. (2010). International Journal of Integrative Biology, 9, 1–5.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. R. C. Budhani, Director, National Physical Laboratory, New Delhi, India for providing the facilities. S.K. Mishra is thankful to the Council of Scientific and Industrial Research, India for providing a senior research fellowship (SRF). We also acknowledge Mr. Sandeep Singh for AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S.K., Sharma, V., Kumar, D. et al. Biofunctionalized Gold Nanoparticle-Conducting Polymer Nanocomposite Based Bioelectrode for CRP Detection. Appl Biochem Biotechnol 174, 984–997 (2014). https://doi.org/10.1007/s12010-014-0984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0984-1

Keywords

Navigation