Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 936–944 | Cite as

Aspect Ratio Dependent Cytotoxicity and Antimicrobial Properties of Nanoclay

  • Kamla Rawat
  • Shweta Agarwal
  • Aakriti Tyagi
  • Anita. K. Verma
  • H. B. BohidarEmail author
Article

Abstract

Nanoclays may enter human body through various routes such as through the respiratory and gastrointestinal tract, skin, blood, etc. There is dearth of such studies evaluating the interaction of clay nanoparticles with human cells. In particular, the interaction of proteins and nucleic acids with nanoparticles of different aspect ratio remains a domain that is very poorly probed and understood. In the present study, we address the issue of cytotoxicity and antimicrobial attributes of two distinct nanoclay platelets namely, laponite (diameter = 25 nm and thickness = 1 nm) and montmorillonite (MMT, diameter = 300 nm and thickness = 1 nm), having different aspect ratio (25:1 vs 300:1). Cytotoxicity was assessed in both prokatyotes: Escherichia coli, eukaryotes-human embryonic kidney (HEK), and cervical cancer SiHa cell lines, and a comparative size-based analysis of the toxicity were made at different exposure time points by MTT assay. The antimicrobial activity of the nanoclays was evaluated by disc diffusion method (Kirbey-Bauer protocol). Laponite exhibited maximum efficacy as an antimicrobial agent against E. coli. Comparatively smaller size laponite could preferentially enter the cells, leading to relatively wider or larger zone of inhibition. On contradictory; laponite showed 74.67 % survival while MMT showed 89.02 % survival in eukaryotic cells at 0.00001 % (w/v) concentration. In summary, both MMT and laponite indicated cytotoxicity at 0.05 % concentration within 24 h of exposure on HEK and cervical cancer (SiHa) cell lines. The toxicity was possibly dependent on size, aspect ratio, and concentration.

Keywords

Laponite MMT Nanoclay Cytotoxicity Antimicrobial studies 

References

  1. 1.
    Ruzicka, B., Zaccarelli, E., Zulian, L., Angelini, R., Sztucki, M., Moussaid, A., et al. (2011). Nature Materials, 10, 56.CrossRefGoogle Scholar
  2. 2.
    Baek, M., Lee, J. A., & Choi, S. J. (2012). Molecular & Cellular Toxicology, 8, 95.CrossRefGoogle Scholar
  3. 3.
    Chithrani, B. D., & Chan, W. C. W. (2007). Nano Letters, 7, 1542.CrossRefGoogle Scholar
  4. 4.
    Wang, Y., Li, D., Li, P., Wang, W., Ren, W., Dong, S., et al. (2007). Journal of Physical Chemistry C, 111, 16833.CrossRefGoogle Scholar
  5. 5.
    Dijkstra, M., Hansen, J. P., & Madden, P. A. (1995). Physical Review Letters, 75, 2236.CrossRefGoogle Scholar
  6. 6.
    Bonn, D., Tanaka, H., Wegdam, G., Kellay, H., & Meunier, J. (1998). Europhysics Letters, 45, 52.CrossRefGoogle Scholar
  7. 7.
    Coussot, P., Nguyen, Q. D., Huynh, H. T., & Bonn, D. (2002). Physical Review Letters, 88, 218301.CrossRefGoogle Scholar
  8. 8.
    Ruzicka, B., Zulian, L., & Ruocco, G. (2004). Physical Review Letters, 93, 258301.CrossRefGoogle Scholar
  9. 9.
    Abou, B., & Gallet, F. (2004). Physical Review Letters, 93, 160603.CrossRefGoogle Scholar
  10. 10.
    Cummins, H. Z. (2007). Journal of Non-Crystalline Solids, 353, 3891.CrossRefGoogle Scholar
  11. 11.
    Farouji, S. J., Wegdam, G. H., & Bonn, D. (2004). Journal of Physics: Condensed Matter, 16, L471.Google Scholar
  12. 12.
    Ruzicka, B., Zulian, L., & Ruocco, G. (2006). Langmuir, 22, 1106.CrossRefGoogle Scholar
  13. 13.
    Pujala, R. K., Pawar, N., & Bohidar, H. B. (2011). Langmuir, 27, 5193.CrossRefGoogle Scholar
  14. 14.
    Van Olphen, H. (1997). An Introduction to Clay Colloid Chemistry. New York: Willey and Sons.Google Scholar
  15. 15.
    Shalkevich, A., Stradner, A., Bhat, S. K., Muller, F., & Schurtenberger, P. (2007). Langmuir, 23, 3570.CrossRefGoogle Scholar
  16. 16.
    Hubbard, J. B., & Douglas, J. F. (1993). Physical Review E, 47, R2983.CrossRefGoogle Scholar
  17. 17.
    Durán, J. D. G., Ramos-Tejada, M. M., Arroyo, F. J., & González-Caballero, F. (2000). Journal of Colloid and Interface Science, 229, 107.CrossRefGoogle Scholar
  18. 18.
    Cadene, A., Durand-Vidal, S., Turq, P., & Brendle, J. J. (2005). Colloid and Interface Science, 285, 719.CrossRefGoogle Scholar
  19. 19.
    Mohanty, B., Verma, A. K., Claesson, P., & Bohidar, H. B. (2007). Nanotechnology, 18, 445102.CrossRefGoogle Scholar
  20. 20.
    Saxena, A., Sachin, K., Bohidar, H. B., & Verma, A. K. (2005). Colloids and Surfaces B: Biointerfaces, 45, 42.CrossRefGoogle Scholar
  21. 21.
    Olphen, H. V. (1977). An introduction to clay colloid chemistry. New York: John-Wiley.Google Scholar
  22. 22.
    Hou, W., Zhao, W., & Li, D. (2004). Chinese Journal of Polymer Science, 22, 459.Google Scholar
  23. 23.
    Laponite Technical Bulletin Laponite Industries Limited, LI04/90/A (1990).Google Scholar
  24. 24.
    Kong, B., Seog, J. H., Graham, L. M., & Lee, S. B. (2011). Nanomedicine (London, England), 6(5), 929.CrossRefGoogle Scholar
  25. 25.
    Shah, N. B., Dong, J., & Bischof, J. C. (2011). Molecular Pharmaceutics, 8(1), 176.CrossRefGoogle Scholar
  26. 26.
    Berder, A., & Sachs, F. (2009). Proc Natl Acad Sci USA, 106, 6626.CrossRefGoogle Scholar
  27. 27.
    Wiliams, R. L., Hadley, M. J., Jiang, P. J., Rowson, N. A., Mendes, P. M., Rappoport, J. Z., et al. (2013). Journal of Materials Chemistry B, 1, 4370.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kamla Rawat
    • 1
  • Shweta Agarwal
    • 2
  • Aakriti Tyagi
    • 2
  • Anita. K. Verma
    • 2
  • H. B. Bohidar
    • 1
    • 3
    Email author
  1. 1.Special Centre for Nano SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Nanobiotech Lab, Department of Zoology, Kirori Mal CollegeUniversity of DelhiDelhiIndia
  3. 3.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations