Skip to main content
Log in

Significance of Satellite DNA Revealed by Conservation of a Widespread Repeat DNA Sequence Among Angiosperms

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The analysis of plant genome structure and evolution requires comprehensive characterization of repetitive sequences that make up the majority of plant nuclear DNA. In the present study, we analyzed the nature of pCtKpnI-I and pCtKpnI-II tandem repeated sequences, reported earlier in Carthamus tinctorius. Interestingly, homolog of pCtKpnI-I repeat sequence was also found to be present in widely divergent families of angiosperms. pCtKpnI-I showed high sequence similarity but low copy number among various taxa of different families of angiosperms analyzed. In comparison, pCtKpnI-II was specific to the genus Carthamus and was not present in any other taxa analyzed. The molecular structure of pCtKpnI-I was analyzed in various unrelated taxa of angiosperms to decipher the evolutionary conserved nature of the sequence and its possible functional role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma, J., & Bennetzen, J. L. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101, 12404–12410.

    CAS  Google Scholar 

  2. Charlesworth, B., Sniegowski, P., & Stephan, W. (1994). Nature, 371, 215–220.

    Article  CAS  Google Scholar 

  3. Smith, G. P. (1976). Science, 191, 528–535.

    Article  CAS  Google Scholar 

  4. Ma, J., & Jackson, S. A. (2006). Genome Research, 16, 251–259.

    Article  CAS  Google Scholar 

  5. Mestrovic, N., Castagnone-Sereno, P., & Plohl, M. (2006). Molecular Biology and Evolution, 23, 2316–2325.

    Article  CAS  Google Scholar 

  6. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., et al. (2001). Nature, 409, 860–921.

    Article  CAS  Google Scholar 

  7. Waterston, R. H., Lindblad-Toh, K., Birney, E., Rogers, J., et al. (2002). Nature, 420, 520–562.

    Article  CAS  Google Scholar 

  8. Feschotte, C. (2008). Nature Reviews Genetics, 9, 397–405.

    Article  CAS  Google Scholar 

  9. Shapiro, J. A., & von Sternberg, R. (2005). Biological Reviews of the Cambridge Philosophical Society, 80(2), 227–250.

    Article  Google Scholar 

  10. Vogt, P. (1990). Human Genetics, 84(4), 301–336.

    Article  CAS  Google Scholar 

  11. Suárez-Santiago, V. N., Blanca, G., Ruiz-Rejón, M., & Garrido-Ramos, M. A. (2007). Gene, 404(1–2), 80–92.

    Article  Google Scholar 

  12. Raina, S. N., Sharma, S., Sasakuma, T., Kishii, M., & Vaishnavi, S. (2005). Journal of Heredity, 96, 424–429.

    Article  CAS  Google Scholar 

  13. Mehrotra, S., Goel, S., Sharma, S., Raina, S. N., & Rajpal, V. R. (2013). Applied Biochemistry and Biotechnology, 169(4), 1109–1125.

    Article  CAS  Google Scholar 

  14. Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Plant Molecular Biology Reporter, 15, 8–15.

    Article  CAS  Google Scholar 

  15. Reed, K. C., & Mann, D. A. (1985). Nucleic Acids Research, 13, 7207–7221.

    Article  CAS  Google Scholar 

  16. Goodsell, D. S., & Dickerson, R. E. (1994). Nucleic Acids Research, 22, 5497–5503.

    Article  CAS  Google Scholar 

  17. Brukner, I., Sanchez, R., Suck, D., & Pongor, S. (1995). EMBO Journal, 14, 1812–1818.

    CAS  Google Scholar 

  18. Gabrielian, A., & Pongor, S. (1996). FEBS Letters, 393, 65–68.

    Article  CAS  Google Scholar 

  19. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  20. Kashi, Y., King, D., & Soller, M. (1997). Trends in Genetics, 13, 74–78.

    Article  CAS  Google Scholar 

  21. Kashi, Y., & King, D. G. (2006). Trends in Genetics, 22, 253–259.

    Article  CAS  Google Scholar 

  22. Feldman, M., & Levy, A. A. (2005). Cytogenetic and Genome Research, 109, 250–258.

    Article  CAS  Google Scholar 

  23. Ma, X. F., & Gustafson, J. P. (2005). Cytogenetic and Genome Research, 109, 236–249.

    Article  CAS  Google Scholar 

  24. Dover, G. A., & Tautz, D. (1986). Philosophical Transactions of the Royal Society of London Series B, 312, 275–289.

    Article  CAS  Google Scholar 

  25. Dover, G. A. (1987). Journal of Molecular Evolution, 26, 47–58.

    Article  CAS  Google Scholar 

  26. Elder, J. F., & Turner, B. J. (1995). The Quarterly Review of Biology, 70, 297–320.

    Article  CAS  Google Scholar 

  27. Wendel, J. F., Schnabel, A., & Seelanan, T. (1995). Molecular Phylogenetics and Evolution, 4, 298–313.

    Article  CAS  Google Scholar 

  28. Hanson, R. E., Zhao, X. P., Islam-Faridi, M. N., Paterson, A. H., Zwick, M. S., Crane, C. F., et al. (1998). American Journal of Botany, 85, 1364–1368.

    Article  CAS  Google Scholar 

  29. Hanson, R. E., Islam-Faridi, M. N., Crane, C. F., Zwick, M. S., Czeschin, D. G., Wendel, J. F., et al. (1999). Chromosome Research, 8, 73–76.

    Article  Google Scholar 

  30. Zhao, X. P., Si, Y., Hanson, R. E., Crane, C. F., Price, H. J., Stelly, D. M., et al. (1998). Genome Research, 8, 479–492.

    CAS  Google Scholar 

  31. Felice, B. D., Wilson, R. R., Ciarmiello, L., & Conicella, C. (2004). Journal of Applied Genetics, 35(3), 315–320.

    Google Scholar 

  32. Frello, S., & Heslop-Harrison, J. S. (2000). Genome, 43, 902–909.

    Article  CAS  Google Scholar 

  33. Lakshmikumaran, M., & Ranade, S. A. (1990). Plant Molecular Biology, 14, 447–448.

    Article  CAS  Google Scholar 

  34. Appels, R., Moran, L. B., & Gustafson, J. P. (1986). Canadian Journal of Genetics and Cytology, 28, 645–657.

    CAS  Google Scholar 

  35. Katsiotis, A., Hagidimitriou, M., Douka, A., & Hatzopoulos, P. (1998). Genome, 41, 527–534.

    Article  CAS  Google Scholar 

  36. Macas, J., Meszaros, T., & Nouzova, M. (2002). Bioinformatics, 18, 28–35.

    Article  CAS  Google Scholar 

  37. Nagaki, K., Kishii, M., Tsujimoto, H., & Sasakuma, T. (1999). Genome, 42, 1258–1260.

    Article  CAS  Google Scholar 

  38. Vershinin, A. V., Svitashev, S., Gummesson, P. O., Salomon, B., Bothmer, R. V., & Bryngelsson, T. (1994). Theoretical and Applied Genetics, 89, 217–225.

    CAS  Google Scholar 

  39. Vershinin, A. V., Schwarzacher, T., & Heslop-Harrison, J. S. (1995). Plant Cell, 7, 1823–1833.

    CAS  Google Scholar 

  40. Vershinin, A. V., Alkhimova, A. G., Heslop-Harrison, J. S., Potapova, T. A., & Omelianchuk, N. (2001). Hereditas, 135, 153–160.

    Article  CAS  Google Scholar 

  41. Gordenin, D. A., Lobachev, K. S., Degtyareva, N. P., Malkova, A. L., Perkins, E., & Resnick, M. A. (2003). Inverted DNA repeats: a source of eukaryotic genomic instability. Trends in Plant Science, 8, 570–575.

    Article  Google Scholar 

  42. Linares, C., Ferrer, E., & Fominaya, A. (1998). Proceedings of the National Academy of Sciences USA, 95, 12450–12455.

    Article  CAS  Google Scholar 

  43. Radic, M. Z., Lundgren, K., & Hamkalo, B. A. (1987). Cell, 50, 1101–1108.

    Article  CAS  Google Scholar 

  44. Mravinac, B., Plohl, M., Meštrović, N., & Ugarković, Ð. (2002). Journal of Molecular Evolution, 54, 774–783.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Delhi through funds provided under a scheme to strengthen the R&D program. S. Mehrotra acknowledges Council of Scientific and Industrial Research (CSIR), Government of India, for providing research fellowship. S. N. Raina thanks the National Academy of Sciences, India (NASI), for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Goel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrotra, S., Goel, S., Raina, S.N. et al. Significance of Satellite DNA Revealed by Conservation of a Widespread Repeat DNA Sequence Among Angiosperms. Appl Biochem Biotechnol 173, 1790–1801 (2014). https://doi.org/10.1007/s12010-014-0966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0966-3

Keywords

Navigation