Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 960–970 | Cite as

Graphene Oxide-Based Biosensor for Food Toxin Detection

  • Saurabh Srivastava
  • Md Azahar Ali
  • Sima Umrao
  • Upendra Kumar Parashar
  • Anchal Srivastava
  • Gajjala Sumana
  • B. D. MalhotraEmail author
  • Shyam Sudhir Pandey
  • Shuji Hayase
Article

Abstract

We report results of the studies relating to the fabrication of a highly sensitive label free biosensor based on graphene oxide (GO) platform for the detection of aflatoxin B1 (AFB1) which is most toxic and predominant food toxin, using electrochemical impedance spectroscopy. The structural and optical characterization of GO/Au and anti-AFB1/GO/Au has been done by electron microscopy, Raman, X-ray diffraction (XRD), UV–vis and electrochemical impedance spectroscopy (EIS). The impedimetric sensing response of immunoelectrode as a function of AFB1 concentration reveals wider linear detection range (0.5–5 ng/ml), high sensitivity (639 Ω ng−1 ml), improved detection limit (0.23 ng ml−1) and good stability (5 weeks) for the label-free detection. Association constant (k a) for antigen–antibody interaction obtained as 0.46 ng ml−1 indicates high affinity.

Keywords

Graphene oxide Aflatoxin B1 Immunosensor Electrochemical impedance spectroscopy 

Notes

Acknowledgments

We thank the Director, CSIR-National Physical Laboratory, New Delhi, India, for providing the facilities. S.S. acknowledges the financial support from CSIR (SRF: 31/001(0302)/2008-EMRI), New Delhi, India. We thank Dr. V. Reddy and Prof. CheolGi Kim for the XPS measurements. The financial support received from Department of Science and Technology, India (Grant No. DST/TSG/ME/2008/18) and Indian Council of Medical Research, India (Grant No. ICMR/5/3/8/91/GM/2010-RHN) is gratefully acknowledged.

Supplementary material

12010_2014_965_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1.68 mb)

References

  1. 1.
    Alwarappan, S., Erdem, A., Liu, C., & Li, C.-Z. (2009). Probing the electrochemical properties of graphene nanosheets for biosensing applications. Journal of Physical Chemistry C, 113, 8853–8857.CrossRefGoogle Scholar
  2. 2.
    Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10, 569–581.CrossRefGoogle Scholar
  3. 3.
    Bart, M., Stigter, E., Stapert, H., De Jong, G., & Van Bennekom, W. (2005). On the response of a label-free interferon-γ immunosensor utilizing electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 21, 49–59.CrossRefGoogle Scholar
  4. 4.
    Daly, S. J., Keating, G. J., Dillon, P. P., Manning, B. M., O'Kennedy, R., Lee, H. A., & Morgan, M. R. A. (2000). Development of surface plasmon resonance-based immunoassay for aflatoxin B1. Journal of Agricultural and Food Chemistry, 48, 5097–5104.CrossRefGoogle Scholar
  5. 5.
    Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460.CrossRefGoogle Scholar
  6. 6.
    Dong, H., Gao, W., Yan, F., Ji, H., & Ju, H. (2010). Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Analytical Chemistry, 82, 5511–5517.CrossRefGoogle Scholar
  7. 7.
    Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.CrossRefGoogle Scholar
  8. 8.
    Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.CrossRefGoogle Scholar
  9. 9.
    Kalita, P., Singh, J., Singh, M. K., Solanki, P. R., Sumana, G., & Malhotra, B. D. (2012). Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Applied Physics Letters, 100, 093702–093704.CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Qin, Z., Wu, X., & Jiang, H. (2006). Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochemical Engineering Journal, 32, 211–217.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Yu, D., Zeng, C., Miao, Z., & Dai, L. (2010). Biocompatible graphene oxide-based glucose biosensors. Langmuir, 26, 6158–6160.CrossRefGoogle Scholar
  12. 12.
    Chen, C., Li, J., Li, R., Xiao, G., & Yan, D. (2013). Synthesis of superior dispersions of reduced graphene oxide. New Journal of Chemistry, 37, 2778–2783.Google Scholar
  13. 13.
    Neto, A. C., Guinea, F., Peres, N., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81, 109.CrossRefGoogle Scholar
  14. 14.
    Orazem, M. E. and Tribollet, B. (2011) Electrochemical impedance spectroscopy. Wiley.Google Scholar
  15. 15.
    Owino, J., Arotiba, O., Hendricks, N., Songa, E., Jahed, N., Waryo, T., Ngece, R., Baker, P., & Iwuoha, E. (2008). Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors, 8, 8262–8274.CrossRefGoogle Scholar
  16. 16.
    Owino, J. H., Ignaszak, A., Al-Ahmed, A., Baker, P. G., Alemu, H., Ngila, J. C., & Iwuoha, E. I. (2007). Modelling of the impedimetric responses of an aflatoxin B1 immunosensor prepared on an electrosynthetic polyaniline platform. Analytical and Bioanalytical Chemistry, 388, 1069–1074.CrossRefGoogle Scholar
  17. 17.
    Piermarini, S., Micheli, L., Ammida, N. H. S., Palleschi, G., & Moscone, D. (2007). Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosensors and Bioelectronics, 22, 1434–1440.CrossRefGoogle Scholar
  18. 18.
    Ruan, C., Yang, L., & Li, Y. (2002). Immunobiosensor chips for detection of Escherichia coli O157: H7 using electrochemical impedance spectroscopy. Analytical Chemistry, 74, 4814–4820.CrossRefGoogle Scholar
  19. 19.
    Sakintuna, B., Yürüm, Y., & Çetinkaya, S. (2004). Evolution of carbon microstructures during the pyrolysis of Turkish Elbistan lignite in the temperature range 700 − 1000 °C. Energy & Fuels, 18, 883–888.CrossRefGoogle Scholar
  20. 20.
    Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., Mathur, R., & Malhotra, B. D. (2013). Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical, 185, 258–264.CrossRefGoogle Scholar
  21. 21.
    Singh, M. K., Mathpal, M. C., & Agarwal, A. (2012). Optical properties of SnO2 quantum dots synthesized by laser ablation in liquid. Chemical Physics Letters, 536, 87–91.CrossRefGoogle Scholar
  22. 22.
    Srivastava, R. K., Srivastava, S., Narayanan, T. N., Mahlotra, B. D., Vajtai, R., Ajayan, P. M., & Srivastava, A. (2011). Functionalized multilayered graphene platform for urea sensor. ACS Nano, 6, 168–175.CrossRefGoogle Scholar
  23. 23.
    Srivastava, S., Kumar, V., Ali, M. A., Solanki, P. R., Srivastava, A., Sumana, G., Saxena, P. S., Joshi, A. G., & Malhotra, B. (2013). Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale, 5, 3043–3051.CrossRefGoogle Scholar
  24. 24.
    Srivastava, S., Solanki, P. R., Kaushik, A., Ali, M. A., Srivastava, A., & Malhotra, B. D. (2011). A self assembled monolayer based microfluidic sensor for urea detection. Nanoscale, 3, 2971–2977.CrossRefGoogle Scholar
  25. 25.
    Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565.CrossRefGoogle Scholar
  26. 26.
    Sun, A.-L., Qi, Q.-A., Dong, Z.-L., & Liang, K. (2008). An electrochemical enzyme immunoassay for aflatoxin B1 based on bio-electrocatalytic reaction with room-temperature ionic liquid and nanoparticle-modified electrodes. Sensing and Instrumentation for Food Quality and Safety, 2, 43–50.CrossRefGoogle Scholar
  27. 27.
    Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1, 203–212.CrossRefGoogle Scholar
  28. 28.
    Tang, D., Zhong, Z., Niessner, R., & Knopp, D. (2009). Multifunctional magnetic bead-based electrochemical immunoassay for the detection of aflatoxin B1 in food. Analyst, 134, 1554–1560.CrossRefGoogle Scholar
  29. 29.
    Tang, H., Chen, J., Nie, L., Kuang, Y., & Yao, S. (2007). A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film. Biosensors and Bioelectronics, 22, 1061–1067.CrossRefGoogle Scholar
  30. 30.
    Wang, C., Li, D., Too, C. O., & Wallace, G. G. (2009). Electrochemical properties of graphene paper electrodes used in lithium batteries. Chemistry of Materials, 21, 2604–2606.CrossRefGoogle Scholar
  31. 31.
    Wang, L., & Gan, X.-X. (2009). Biomolecule-functionalized magnetic nanoparticles for flow-through quartz crystal microbalance immunoassay of aflatoxin B1. Bioprocess and Biosystems Engineering, 32, 109–116.CrossRefGoogle Scholar
  32. 32.
    Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 29, 205–212.CrossRefGoogle Scholar
  33. 33.
    Xiulan, S., Xiaolian, Z., Jian, T., Zhou, J., & Chu, F. (2005). Preparation of gold-labeled antibody probe and its use in immunochromatography assay for detection of aflatoxin B1. International Journal of Food Microbiology, 99, 185–194.CrossRefGoogle Scholar
  34. 34.
    Yang, L., Li, Y., & Erf, G. F. (2004). Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157: H7. Analytical Chemistry, 76, 1107–1113.CrossRefGoogle Scholar
  35. 35.
    Zekavati, R., Safi, S., Hashemi, S. J., Rahmani-Cherati, T., Tabatabaei, M., Mohsenifar, A., & Bayat, M. (2013). Highly sensitive FRET-based fluorescence immunoassay for aflatoxin B1 using cadmium telluride quantum dots. Microchimica Acta, 180, 1217–1223.CrossRefGoogle Scholar
  36. 36.
    Zhou, M., Zhai, Y., & Dong, S. (2009). Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 81, 5603–5613.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Saurabh Srivastava
    • 1
    • 2
  • Md Azahar Ali
    • 1
  • Sima Umrao
    • 2
  • Upendra Kumar Parashar
    • 3
  • Anchal Srivastava
    • 2
  • Gajjala Sumana
    • 1
  • B. D. Malhotra
    • 1
    • 4
    Email author
  • Shyam Sudhir Pandey
    • 5
  • Shuji Hayase
    • 5
  1. 1.Department of Science and Technology, Center on Biomolecular Electronics, Biomedical Instrumentation SectionCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  3. 3.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia
  4. 4.Department of BiotechnologyDelhi Technological UniversityDelhiIndia
  5. 5.Department of Biological Functions and Systems, Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyWakamatsuJapan

Personalised recommendations