Skip to main content
Log in

Enhancing the Thermostability of a Cold-Active Lipase from Penicillium cyclopium by In Silico Design of a Disulfide Bridge

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cysteine mutants of a cold-active lipase (PcLipI) from Penicillium cyclopium were designed by the software Disulfide by Design Ver. 1.20 in an effort to improve enzyme thermostability by addition of a disulfide bridge. Those mutants predicted by molecular dynamics simulation to have better thermostability than the wild type were first expressed in Escherichia coli BL21(DE3) and then, for further investigation, in Pichia pastoris GS115. By replacing Val248 and Thr251 with cysteines to create a disulfide bridge, the recombinant lipases reE-PcLipV248C-T251C (expressed in E. coli) and reP-PcLipV248C-T251C (expressed in P. pastoris) were obtained. Both had enhanced thermostability with half-lives at 35 °C about 4.5- and 12.8-fold longer than that of the parent PcLipI expressed in E. coli and P. pastoris, respectively. The temperature optima of reE-PcLipV248C-T251C and reP-PcLipV248C-T251C were 35 and 30 °C, which were each 5 °C higher than those of the parent PcLipI expressed in E. coli and P. pastoris. The K ms of reE-PcLipV248C-T251C and reP-PcLipV248C-T251C toward tributyrin were 53.2 and 39.5 mM, while their V maxs were 1,460 and 3,800 U/mg, respectively. PcLipV248C-T251C had better thermostability and catalytic efficiency than the other mutants and the parent PcLipI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jaeger, K. E., & Eggert, T. (2002). Current Opinion in Biotechnology, 13, 390–397.

    Article  CAS  Google Scholar 

  2. Feller, G., Narinx, E., Arpigny, J. L., Aittaleb, M., Baise, E., Genicot, S., et al. (1996). FEMS Microbiology Reviews, 18, 189–202.

    Article  CAS  Google Scholar 

  3. Hasan, F., Shah, A. A., & Hameed, A. (2006). Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  4. Alquati, C., De Gioia, L., Santarossa, G., Alberghina, L., Fantucci, P., & Lotti, M. (2002). European Journal of Biochemistry, 269, 3321–3328.

    Article  CAS  Google Scholar 

  5. Liebeton, K., Zacharias, A., & Jaeger, K. E. (2001). Journal of Bacteriology, 183, 597–603.

    Article  CAS  Google Scholar 

  6. Han, Z. L., Han, S. Y., Zheng, S. P., & Lin, Y. (2009). Applied Microbiology and Biotechnology, 85, 117–126.

    Article  CAS  Google Scholar 

  7. Yu, X. W., Tan, N. J., Xiao, R., & Xu, Y. (2012). PLoS One, 7, e46388.

    Article  CAS  Google Scholar 

  8. Le, Q. A. T., Joo, J. C., Yoo, Y. J., & Kim, Y. H. (2012). Biotechnology and Bioengineering, 109, 867–876.

    Article  CAS  Google Scholar 

  9. Sha, C., Yu, X. W., Lin, N. X., Zhang, M., & Xu, Y. (2013). Enzyme and Microbial Technology, 53, 438–443.

    Article  CAS  Google Scholar 

  10. Tan, Z. B., Li, J. F., Wu, M. C., Tang, C. D., Zhang, H. M., & Wang, J. Q. (2011). World Journal of Microbiology and Biotechnology, 27, 2767–2774.

    Article  CAS  Google Scholar 

  11. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  12. Grochulski, P., Bouthillier, F., Kazlauskas, R. J., Serreqi, A. N., Schrag, J. D., Ziomek, E., et al. (1994). Biochemistry, 33, 3494–3500.

    Article  CAS  Google Scholar 

  13. Uppenberg, J., Ohrner, N., Norin, M., Hult, K., Kleywegt, G. J., Patkar, S., et al. (1995). Biochemistry, 34, 16838–16851.

    Article  CAS  Google Scholar 

  14. Lang, D. A., Mannesse, M. L., de Haas, G. H., Verheij, H. M., & Dijkstra, B. W. (1998). European Journal of Biochemistry, 254, 333–340.

    Article  CAS  Google Scholar 

  15. Nardini, M., Lang, D. A., Liebeton, K., Jaeger, K. E., & Dijkstra, B. W. (2000). Journal of Biological Chemistry, 275, 31219–31225.

    Article  CAS  Google Scholar 

  16. Dombkowski, A. A. (2003). Bioinformatics, 19, 1852–1853.

    Article  CAS  Google Scholar 

  17. Badieyan, S., Bevan, D. R., & Zhang, C. (2012). Biotechnology and Bioengineering, 109, 31–44.

    Article  CAS  Google Scholar 

  18. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., et al. (2013). Bioinformatics, 29, 845–854.

    Article  CAS  Google Scholar 

  19. Xie, Z. H., & Shi, X. J. (2009). Progress in Biochemistry and Biophysics, 36, 1490–1494.

    Article  CAS  Google Scholar 

  20. Zhou, C., Bai, H., Deng, S., Wang, J., Zhu, J., Wu, M., et al. (2008). Bioresource Technology, 99, 831–838.

    Article  CAS  Google Scholar 

  21. Zhang, H., Wu, M., Li, J., Gao, S., & Yang, Y. (2012). Applied Biochemistry and Biotechnology, 167, 2198–2211.

    Article  CAS  Google Scholar 

  22. Wu, M. C., Qian, Z. K., Jiang, P. H., Min, T. S., Sun, C. R., & Huang, W. D. (2003). Lipids, 38, 191–199.

    Article  CAS  Google Scholar 

  23. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  24. Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., et al. (1992). Protein Engineering, 5, 197–211.

    Article  CAS  Google Scholar 

  25. Liu, L., Gao, C., Lan, D., Yang, B., & Wang, Y. (2012). Biochemical and Biophysical Research Communications, 424, 285–289.

    Article  CAS  Google Scholar 

  26. Radestock, S., & Gohlke, H. (2008). Engineering in Life Sciences, 8, 507–522.

    Article  CAS  Google Scholar 

  27. Austin, B. P., & Waugh, D. S. (2012). Protein Expression and Purification, 82, 116–214.

    Article  CAS  Google Scholar 

  28. Warsame, A., Vad, R., Kristensen, T., & Oyen, T. B. (2001). Biochemical and Biophysical Research Communications, 281, 1176–1182.

    Article  CAS  Google Scholar 

  29. Cereghino, J. L., & Cregg, J. M. (2000). FEMS Microbiology Reviews, 24, 45–66.

    Article  CAS  Google Scholar 

  30. Horchani, H., Ouertani, S., Gargouri, Y., & Sayari, A. (2009). Journal of Molecular Catalysis B: Enzymatic, 61, 194–201.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (no. 20776061) and the Postgraduate Innovation Training Project of Jiangsu (no. CXZZ12-0758). We are grateful to Prof. Xianzhang Wu (School of Biotechnology, Jiangnan University) for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minchen Wu.

Additional information

Zhongbiao Tan and Jianfang Li, the two first authors, contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Li, J., Wu, M. et al. Enhancing the Thermostability of a Cold-Active Lipase from Penicillium cyclopium by In Silico Design of a Disulfide Bridge. Appl Biochem Biotechnol 173, 1752–1764 (2014). https://doi.org/10.1007/s12010-014-0962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0962-7

Keywords

Navigation