Skip to main content

Advertisement

Log in

Controlled Continuous Bio-Hydrogen Production Using Different Biogas Release Strategies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dark fermentation for bio-hydrogen (bio-H2) production is an easily operated and environmentally friendly technology. However, low bio-H2 production yield has been reported as its main drawback. Two strategies have been followed in the past to improve this fact: genetic modifications and adjusting the reaction conditions. In this paper, the second one is followed to regulate the bio-H2 release from the reactor. This operating condition alters the metabolic pathways and increased the bio-H2 production twice. Gas release was forced in the continuous culture to study the equilibrium in the mass transfer between the gaseous and liquid phases. This equilibrium depends on the H2, CO2, and volatile fatty acids production. The effect of reducing the bio-H2 partial pressure (bio-H2 pp) to enhance bio-H2 production was evaluated in a 30 L continuous stirred tank reactor. Three bio-H2 release strategies were followed: uncontrolled, intermittent, and constant. In the so called uncontrolled fermentation, without bio-H2 pp control, a bio-H2 molar yield of 1.2 mol/mol glucose was obtained. A sustained low bio-H2 pp of 0.06 atm increased the bio-H2 production rate from 16.1 to 108 mL/L/h with a stable bio-H2 percentage of 55 % (v/v) and a molar yield of 1.9 mol/mol glucose. Biogas release enhanced bio-H2 production because lower bio-H2 pp, CO2 concentration, and reduced volatile fatty acids accumulation prevented the associated inhibitions and bio-H2 consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park, W., Hyun, S. H., Oh, S. E., Logan, B. E., & Kim, I. S. (2005). Removal of headspace CO2 increases biological hydrogen production. Environmental Science and Technology, 39, 4416–4420.

    Article  CAS  Google Scholar 

  2. Nath, K., & Das, D. (2004). Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology, 65, 520–529.

    Article  CAS  Google Scholar 

  3. García-Peña, E., Guerrero-Barajas, C., Ramirez, D., & Arriaga-Hurtado, L. (2009). Semi-continuous biohydrogen production as an approach to generate electricity. Bioresource Technology, 100, 6369–6377.

    Article  CAS  Google Scholar 

  4. Hallenbeck, P., & Ghosh, D. (2010). Improvements in fermentative biological hydrogen production through metabolic engineering. Journal of Environmental Management, 95, 360–364.

    Article  CAS  Google Scholar 

  5. Ueno, Y., Haruta, S., Ishii, M., & Igarashi, Y. (2001). Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Applied Microbiology and Biotechnology, 57, 555–562.

    Article  CAS  Google Scholar 

  6. Mizuno, O., Dinsdale, R., Hawkes, F., Hawkes, D., & Noike, T. (2000). Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology, 73, 59–65.

    Article  CAS  Google Scholar 

  7. Lee, H., Salerno, M., & Rittmann, B. (2008). Thermodynamic evaluation on H2 production in glucose fermentation. Environmental Science and Technology, 42, 2401–2407.

    Article  CAS  Google Scholar 

  8. Prakasham, R., Sathish, T., & Brahmaiah, P. (2010). Biohydrogen production process optimization using anaerobic mixed consortia: a prelude study for use of agroindustrial material hydrolysate as substrate. Bioresource Technology, 101, 5708–5711.

    Article  CAS  Google Scholar 

  9. Hung, C., Chang, Y., & Chang, Y. (2011). Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—a review. Bioresource Technology, 102, 8437–8444.

    Article  CAS  Google Scholar 

  10. Oh, Y., Raj, S., Jung, G., & Park, S. (2011). Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresource Technology, 102, 8357–8367.

    Article  CAS  Google Scholar 

  11. Fang, H., Zhang, T., & Liu, H. (2002). Microbial diversity of mesophilic hydrogen production sludge. Applied Microbiology and Biotechnology, 58, 112–118.

    Article  CAS  Google Scholar 

  12. Hussy, I., Hawkes, F. R., Dinsdale, R., & Hawkes, D. L. (2003). Continuous fermentation hydrogen production from a wheat starch coproduct by mixed microflora. Biotechnology and Bioengineering, 84, 619–626.

    Article  Google Scholar 

  13. Van-Ginkel, S., Oh, S., & Logan, B. (2005). Biohydrogen gas production from food processing and domestic wastewaters. International Journal of Hydrogen Energy, 30, 1535–1542.

    Article  CAS  Google Scholar 

  14. Hawkes, F., Dinsdale, R., Hawkes, D., & Hussy, I. (2002). Sustainable fermentative hydrogen production: challenges for process optimization. International Journal of Hydrogen Energy, 27, 1339–1347.

    Article  CAS  Google Scholar 

  15. Valdez-Vazquez, I., Rios-Leal, E., Carmona-Martinez, A., Muñoz-Paez, K., & Poggi Varaldo, H. (2006). Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environmental Science and Technology, 40, 3409–3415.

    Article  CAS  Google Scholar 

  16. Angenent, L. T., Karim, K., Al-Dahhan, M., Wrenn, B., & Dominguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 22, 477–485.

    Article  CAS  Google Scholar 

  17. Mandal, B., Nath, K., & Das, D. (2006). Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnology Letters, 28, 831–835.

    Article  CAS  Google Scholar 

  18. Bastidas-Oyanedel, J. R., Mohd-Zaki, Z., Zeng, R. J., Bernet, N., Pratt, S., Steyer, J. P., & Batstonebet, D. J. (2012). Gas controlled hydrogen fermentation. Bioresource Technology, 110, 503–509.

    Article  CAS  Google Scholar 

  19. Jung, K. W., Kim, D. H., Kim, S. H., & Shin, H. S. (2011). Bioreactor design for continuous dark fermentative hydrogen production. Bioresource Technology, 102, 8612–8620.

    Article  CAS  Google Scholar 

  20. Kim, D., Han, S., Kim, S., & Shin, H. (2006). Effect of gas sparging on continuous fermentative hydrogen production. International Journal of Hydrogen Energy, 31, 2158–2169.

    Article  CAS  Google Scholar 

  21. Kraemer, J., & Bagley, D. (2008). Optimisation and design of nitrogen-sparged fermentative hydrogen production bioreactors. International Journal of Hydrogen Energy, 33, 6558–6565.

    Article  CAS  Google Scholar 

  22. Logan, B., Oh, S., Kim, I., & Van-Ginkel, S. V. (2002). Biological hydrogen production measured in batch anaerobic respirometers. Environmental Science and Technology, 36, 2530–2535.

    Article  CAS  Google Scholar 

  23. Oh, S., Zue, Y., Zhang, H., Guiltinan, M., Logan, B., & Regan, J. (2009). Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. International Journal of Hydrogen Energy, 34, 9347–9353.

    Article  CAS  Google Scholar 

  24. Garcia-Peña, E. I., Parameswaran, P., Kang, D., Canul-Chan, M., & Krajmalnik-Brown, R. (2011). Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresource Technology, 102, 9447–9455.

    Article  CAS  Google Scholar 

  25. Canul, M., Salgado, E., Aranda, J., & Garcia, E. I. (2010). Hydrogen and electricity production from the organic fraction of solid waste. Proceedings of the Third International Symposium on Energy from Biomass and Waste. Italy.

  26. Garcia-Peña, E. I., Canul-Chan, M., Chairez, I., Salgado-Manjarez, E., & Aranda-Barradas, J. (2013). Biohydrogen production based on the evaluation of kinetic parameters of a mixed microbial culture using glucose and fruit–vegetable waste as feedstocks. Applied Biochemistry and Biotechnology, 171, 279–293.

    Article  CAS  Google Scholar 

  27. Hallenbeck, P. C., & Ghosh, D. (2009). Advances in fermentative biohydrogen production: the way forward? Trends in Biotechnology, 27, 287–297.

    Article  CAS  Google Scholar 

  28. Arriaga, S., Rosas, I., Alatriste-Mondragón, F., & Razo-Flores, E. (2011). Continuous production of hydrogen from oat straw hydrolysate in a biotrickling filter. International Journal of Hydrogen Energy, 36, 3442–3449.

    Article  CAS  Google Scholar 

  29. Kongjan, P., O-Thong, S., Kotay, M., Min, B., & Angelidaki, I. (2010). Biohydrogen production from wheat straw hydrolysates by dark fermentation using extreme thermophilic mixed culture. Biotechnology and Bioengineering, 105, 899–908.

    CAS  Google Scholar 

  30. Arooj, M. F., Han, S. K., Kim, S. H., & Dong-Hoon, K. (2008). Continuous biohydrogen production in a CSTR using starch as a substrate. International Journal of Hydrogen Energy, 33, 3289–3294.

    Article  CAS  Google Scholar 

  31. Lee, D., Li, Y., & Noike, T. (2009). Continuous H2 production by anaerobic mixed microflora in membrane bioreactor. Bioresource Technology, 100, 690–695.

    Article  CAS  Google Scholar 

  32. Zheng, X. J., & Yu, H. Q. (2005). Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures. Journal of Environmental Management, 74, 65–70.

    Article  CAS  Google Scholar 

  33. Gottschalk, G. (1986). Bacterial metabolism (2nd ed.). New York: Springer.

    Book  Google Scholar 

  34. Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications. New York: McGraw-Hill.

    Google Scholar 

  35. Cai, G., Jin, B., Saint, C., & Monis, P. (2010). Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: effect of pH and glucose concentration. International Journal of Hydrogen Energy, 35, 6681–6690.

    Article  CAS  Google Scholar 

  36. Das, D. (2009). Advances in biohydrogen production processes: an approach towards commercialization. International Journal of Hydrogen Energy, 34, 7349–7357.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through funding provided by the CONACYT grant 60976 and Instituto Politécnico Nacional, grant SIP 20140405. The authors are grateful to Conacyt for the fellowship awarded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Garcia-Peña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esquivel-Elizondo, S., Chairez, I., Salgado, E. et al. Controlled Continuous Bio-Hydrogen Production Using Different Biogas Release Strategies. Appl Biochem Biotechnol 173, 1737–1751 (2014). https://doi.org/10.1007/s12010-014-0961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0961-8

Keywords

Navigation