Skip to main content
Log in

Utilization of Agricultural Residues of Pineapple Peels and Sugarcane Bagasse as Cost-Saving Raw Materials in Scenedesmus acutus for Lipid Accumulation and Biodiesel Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

S. acutus :

Scenedesmus acutus

PP:

Pineapple peels

SB:

Sugarcane bagasse

Agro-residues:

Agricultural residues

AC:

Autotrophic cultivation

MC:

Mixotrophic cultivation

μ:

Specific growth rate

FAME:

Fatty acid methyl ester

References

  1. Ahmad, A. L., Mat, Y. N. H., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: a review. Renewable and Sustainable Energy Reviews, 15, 584–593.

    Article  CAS  Google Scholar 

  2. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications. Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  3. Abou-Shanab, R. A. I., Hwang, J. H., Cho, Y., Min, B., & Jeon, B. H. (2011). Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Applied Energy, 88, 3300–3306.

    Article  CAS  Google Scholar 

  4. Chisti, Y. (2007). Research review paper: biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  5. Halim, R., Danquah, M. K., & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: a review. Biotechnology Advances, 30, 709–732.

    Article  CAS  Google Scholar 

  6. Ho, S. H., Chen, W. M., & Chang, J. S. (2010). Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 101, 8725–8730.

    Article  CAS  Google Scholar 

  7. Kaewkannetra, P., Enmak, P., & Chiu, T. Y. (2012). The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnology and Bioprocess Engineering, 17, 591–597.

    Article  CAS  Google Scholar 

  8. Arroyo, T. H., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35, 2245–2253.

    Article  Google Scholar 

  9. Miao, X. L., & Wu, Q. Y. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97, 841–846.

    Article  CAS  Google Scholar 

  10. Yan, D., Lu, Y., Chen, Y. F., & Wu, Q. (2011). Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresource Technology, 102, 6487–6493.

    Article  CAS  Google Scholar 

  11. Lu, Y., Zhai, Y., Liu, M., & Wu, Q. (2010). Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. Journal of Applied Phycology, 22, 573–578.

    Article  CAS  Google Scholar 

  12. Gao, C., Zhai, Y., Ding, Y., & Wu, Q. (2010). Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 87, 756–761.

    Article  CAS  Google Scholar 

  13. Hu, B., Min, M., Zhou, W., Li, Y., Mohr, M., Cheng, Y., Lei, H., Liu, Y., Lin, X., Chen, P., & Ruan, R. (2012). Influence of exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Applied Biochemistry and Biotechnology, 166, 1661–1673.

    Article  CAS  Google Scholar 

  14. FAO, (2010). Statistical Yearbook. Food and Agriculture Organization of the United Nations. Available from: www.fao.org. Accessed November 26, 2013.

  15. Ketnawa, S., Chaiwut, P., & Rawdkuen, S. (2012). Pineapple wastes: a potential source for bromelain extraction. Food and Bioproducts Processing, 90, 385–391.

    Article  CAS  Google Scholar 

  16. Namsree, P., Suvajittanont, W., Puttanlek, C., Uttapap, D., & Rungsardthong, V. (2012). Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor. Journal of Environmental Management, 110, 40–47.

    Article  CAS  Google Scholar 

  17. Hu, X., Hu, K., Zeng, L., Zhao, M., & Huang, H. (2010). Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohydrate Polymers, 82, 62–68.

    Article  CAS  Google Scholar 

  18. FAO, (2012). Impact of Thai sugar policy on the world sugar economy. Food and Agriculture Organization of the United Nations. Available from: www.fao.org. Accessed November 26, 2013.

  19. Cardona, C. A., Quintero, J. A., & Paz, I. C. (2010). Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresource Technology, 101, 4754–4766.

    Article  CAS  Google Scholar 

  20. Inyang, M., Gao, B., Pullammanappallil, P., Ding, W., & Zimmerman, A. R. (2010). Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 101, 8868–8872.

    Article  CAS  Google Scholar 

  21. Gamez, S., Gonzalez-Cabriales, J. J., Ramirez, J. A., Garrote, G., & Vazquez, M. (2006). Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 74, 78–88.

    Article  CAS  Google Scholar 

  22. Chandel, A. K., Kapoor, R., Singh, A., & Kuhad, R. C. (2007). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98, 1947–1950.

    Article  CAS  Google Scholar 

  23. Manikkandan, T. R., Dhanasekar, R., & Thirumavalavan, K. (2009). Microbial production of hydrogen from sugarcane bagasse using Bacillus Sp. International Journal of ChemTech Research, 1, 344–348.

    CAS  Google Scholar 

  24. Lohrey, C., & Kochergin, V. (2012). Biodiesel production from microalgae: co-location with sugar mills. Bioresource Technology, 108, 76–82.

    Article  CAS  Google Scholar 

  25. Barsanti, L., & Gualtieri, P. (2006). Algae: anatomy, biochemistry and biotechnology. USA.: CRC Press.

    Google Scholar 

  26. Zhou, W., Li, Y., Min, M., Hu, B., Chen, P., & Ruan, R. (2011). Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology, 102, 6909–6919.

    Article  CAS  Google Scholar 

  27. Balasubramanian, S., Allen, J. D., Kanitkar, A., & Boldor, D. (2011). Oil extraction from Scenedesmus obliquus using a continuous microwave system—design, optimization, and quality characterization. Bioresource Technology, 102, 3396–3403.

    Article  CAS  Google Scholar 

  28. Ho, S., Chen, H. C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 224–252.

    Article  Google Scholar 

  29. Wang, Y., Chen, T., & Qin, S. (2012). Heterotrophic cultivation of Chlorella kessleri for fatty acids production by carbon and nitrogen supplements. Biomass and Bioenergy, 47, 402–409.

    Article  CAS  Google Scholar 

  30. Da Silva, T. L., Reis, A., Medeiros, R., Oliveira, A. C., & Gouveia, L. (2009). Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Applied Biochemistry and Biotechnology, 159, 568–578.

    Article  Google Scholar 

  31. Zhang, H., Wang, W., Li, Y., Yang, W., & Shen, G. (2011). Mixotrophic cultivation of Botryococcus braunii. Biomass and Bioenergy, 35, 1710–1715.

    Article  CAS  Google Scholar 

  32. Doria, E., Longoni, P., Scibilia, L., Iazzi, N., Cella, R., & Nielsen, E. (2012). Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. Journal of Applied Phycology, 24, 375–383.

    Article  CAS  Google Scholar 

  33. Torricelli, E., Gessica, G., Pawlik-Skowronska, B., Di Toppi, L. S., & Corradi, M. G. (2004). Cadmium tolerance, cysteine and thiol peptide levels in wild type and chromium-tolerant strains of Scenedesmus acutus (Chlorophyceae). Aquatic Toxicology, 68, 315–323.

    Article  CAS  Google Scholar 

  34. Sacristan de Alva, M., Luna-Pabello, V. M., Cadena, E., & Ortiz, E. (2013). Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresource Technology, 146, 744–748.

    Article  CAS  Google Scholar 

  35. Knothe, G. (2008). Designer biodiesel: optimizing fatty ester composition to improve fuel properties. Energy and Fuels, 22, 1358–1364.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely acknowledge the National Research University (NRU) Project, Khon Kaen University, Khon Kaen 40002, Thailand, for financial contribution under contract project number Ph.D 54302 for the year 2011–2014. In addition, one of the authors (P. Kaewkannetra) also would like to thanks Centre for Alternative Energy Research and Development (AERD), Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand for some matching fund (contract no. R06/56).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pakawadee Kaewkannetra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rattanapoltee, P., Kaewkannetra, P. Utilization of Agricultural Residues of Pineapple Peels and Sugarcane Bagasse as Cost-Saving Raw Materials in Scenedesmus acutus for Lipid Accumulation and Biodiesel Production. Appl Biochem Biotechnol 173, 1495–1510 (2014). https://doi.org/10.1007/s12010-014-0949-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0949-4

Keywords

Navigation