Skip to main content
Log in

Effect of Cofactor Folate on the Growth of Corynebacterium glutamicum SYPS-062 and l-Serine Accumulation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The direct fermentative production of l-serine from sugar has attracted increasing attention. Corynebacterium glutamicum SYPS-062 can directly convert sugar to l-serine. In this study, the effects of exogenous and endogenous regulation of cofactor folate on C. glutamicum SYPS-062 growth and l-serine accumulation were investigated. For exogenous regulation, the inhibitor (sulfamethoxazole) or precursor (p-aminobenzoate) of folate biosynthesis was added to the medium, respectively. For endogenous regulation, the gene (pabAB) that encodes the key enzyme of folate biosynthesis was knocked out or overexpressed to obtain the recombinant C. glutamicum SYPS-062 ΔpabAB and SYPS-062(pJC-tac-pabAB), respectively. The results indicated that decreased levels of cofactor folate supported l-serine accumulation, whereas increased levels of cofactor folate aided in cell growth of C. glutamicum SYPS-062. Thus, this study not only elucidated the role of folate in C. glutamicum SYPS-062 growth and l-serine accumulation, but also provided a novel and convenient approach to regulate folate biosynthesis in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Becker, J., Zelder, O., Hafner, S., Schroder, H., & Wittmann, C. (2011). From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metabolic Engineering, 13, 159–168.

    Article  CAS  Google Scholar 

  2. Chang, Z., Sun, Y., He, J., & Vining, L. C. (2001). p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology, 147, 2113–2126.

    CAS  Google Scholar 

  3. Eggeling, L. (2007). L-Serine and glycine (5th ed.). Berlin: Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  4. Hjortmo, S., Patring, J., & Andlid, T. (2008). Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. International Journal of Food Microbiology, 123, 93–100.

    Article  CAS  Google Scholar 

  5. Holatko, J., Elisakova, V., Prouza, M., Sobotka, M., Nesvera, J., & Patek, M. (2009). Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. Journal of Biotechnology, 139, 203–210.

    Article  CAS  Google Scholar 

  6. Jiang, W., Xia, B., & Liu, Z. (2013). A serine hydroxymethyltransferase from marine bacterium Shewanella algae: isolation, purification, characterization and L-serine production. Microbiology Research, 168, 477–484.

    Article  CAS  Google Scholar 

  7. Jin, X., Zhang, X., Dou, W., Xu, H., & Xu, Z. (2011). Activity analysis of L-serine dehydratase and effect of the gene knockout on L-serine accumulation in Corynebacterium glutamicum SYPS-062. China Biotechnology, 31, 29–34.

    CAS  Google Scholar 

  8. Kimura, E. (2003). Metabolic engineering of glutamate production. Advances in Biochemical Engineering/Biotechnology, 79, 37–57.

    Article  CAS  Google Scholar 

  9. Kubota, K. (1985). Improved production of L-serine by mutants of Corynebacterium glycinophilum with less serine dehydratase activity. Agricultural and Biological Chemistry 49.

  10. Leuchtenberger, W., Huthmacher, K., & Drauz, K. (2005). Biotechnological production of amino acids and derivatives: current status and prospects. Applied Microbiology and Biotechnology, 69, 1–8.

    Article  CAS  Google Scholar 

  11. Li, Y., Chen, G. K., Tong, X. W., Zhang, H. T., Liu, X. G., Liu, Y. H., et al. (2012). Construction of Escherichia coli strains producing L-serine from glucose. Biotechnology Letters, 34, 1525–1530.

    Article  CAS  Google Scholar 

  12. Lin, L., Dou, W., Zhang, X., Xu, H., Xu, Z., & Wang, Z. (2008). Analysis of glyA gene from Corynebacterium glutamicum SYPS-062 which can produce L-serine from sugar substances. Biotechnology Bulletin, 5, 176–180.

    Google Scholar 

  13. Netzer, R., Peters-Wendisch, P., Eggeling, L., & Sahm, H. (2004). Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum. Applied and Environmental Microbiology, 70, 7148–7155.

    Article  CAS  Google Scholar 

  14. Omori, K., Kakimoto, T., & Chibata, I. (1983). L-serine production by a mutant of Sarcina albida defective in L-serine degradation. Applied and Environmental Microbiology, 45, 1722–1726.

    CAS  Google Scholar 

  15. Park, S. D., Lee, J. Y., Sim, S. Y., Kim, Y., & Lee, H. S. (2007). Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metabolic Engineering, 9, 327–336.

    Article  CAS  Google Scholar 

  16. Peters-Wendisch, P., Netzer, R., Eggeling, L., & Sahm, H. (2002). 3-phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by L-serine. Applied Microbiology and Biotechnology, 60, 437–441.

    Article  CAS  Google Scholar 

  17. Peters-Wendisch, P., Stolz, M., Etterich, H., Kennerknecht, N., Sahm, H., & Eggeling, L. (2005). Metabolic engineering of Corynebacterium glutamicum for L-serine production. Applied and Environmental Microbiology, 71, 7139–7144.

    Article  CAS  Google Scholar 

  18. Prabhu, V., Chatson, K. B., Abrams, G. D., & King, J. (1996). 13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis. Plant Physiology, 112, 207–216.

    Article  CAS  Google Scholar 

  19. Prabhu, V., Chatson, K. B., Lui, H., Abrams, G. D., & King, J. (1998). Effects of sulfanilamide and methotrexate on 13C fluxes through the glycine decarboxylase/serine hydroxymethyltransferase enzyme system in arabidopsis. Plant Physiology, 116, 137–144.

    Article  CAS  Google Scholar 

  20. Ren, J., Zhang, X., Dou, W., Xu, H., & Xu, Z. (2009). The activity study of aminodeoxychorismate synthase of different Corynebacterium glutamicum. China Biotechnology, 29, 57–61.

    CAS  Google Scholar 

  21. San, K. Y., Bennett, G. N., Berrios-Rivera, S. J., Vadali, R. V., Yang, Y. T., Horton, E., et al. (2002). Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metabolic Engineering, 4, 182–192.

    Article  CAS  Google Scholar 

  22. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., & Puhler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145, 69–73.

    Article  CAS  Google Scholar 

  23. Simic, P., Willuhn, J., Sahm, H., & Eggeling, L. (2002). Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. Applied and Environmental Microbiology, 68, 3321–3327.

    Article  CAS  Google Scholar 

  24. Stolz, M., Peters-Wendisch, P., Etterich, H., Gerharz, T., Faurie, R., Sahm, H., et al. (2007). Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. Applied and Environmental Microbiology, 73, 750–755.

    Article  CAS  Google Scholar 

  25. Tauch, A., Kirchner, O., Loffler, B., Gotker, S., Puhler, A., & Kalinowski, J. (2002). Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Current Microbiology, 45, 362–367.

    Article  CAS  Google Scholar 

  26. Wendisch, V. F., Bott, M., & Eikmanns, B. J. (2006). Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Current Opinion in Microbiology, 9, 268–274.

    Article  CAS  Google Scholar 

  27. Zhang, X., Dou, W., Xu, H., & Xu, Z. (2009). Identification of L-serine producer SYPS-062 and the effect of different carbon source. Microbiology, 36, 789–793.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the High Tech Development Program of China (863 Project, No. 2012AA022102) and the production project of Ministry of Education of Guangdong province (No. 2012B091000083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, G., Li, H. et al. Effect of Cofactor Folate on the Growth of Corynebacterium glutamicum SYPS-062 and l-Serine Accumulation. Appl Biochem Biotechnol 173, 1607–1617 (2014). https://doi.org/10.1007/s12010-014-0945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0945-8

Keywords

Navigation