Skip to main content
Log in

Optimization of Anaerobic Co-digestion of Strawberry and Fish Waste

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Anaerobic co-digestion of agri-food waste is a promising management alternative. Its implementation, however, requires evaluating the proportion in which waste should be mixed to optimize their centralized treatment. The combined treatment of strawberry extrudate and fish waste, which are widely generated in Mediterranean areas, was optimized. Strawberry extrudate and fish waste were mixed and treated at different proportions (88:12, 94:6, and 97:3, respectively; wet basis). The proportions selected for the mixture allow the different flows to be absorbed simultaneously. The highest methane production was observed for the ratio 94:6 (0.205 m3 STP CH4/kg volatile solid) (VS) (STP; 0 °C, 1 atm), with a methane production rate in the range of 5 · 10−3–9 · 10−3 m3 STP/kg VS · d, while the highest organic loading rate was observed for the mixture at a proportion 88:12 (1.9 ± 0.1 kg VS/m3 · d). Biodegradability was found to be similar for the 88:12 and 94:6 proportions, with values around 90 % in VS. Nevertheless, the 97:3 ratio was not viable due to a low methane production. An inhibition phenomenon occurred at increasing loads due to the effect of some compounds contained in the fish waste such as chloride or nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Alk:

Alkalinity (kg CaCO3/m3)

BD:

Biodegradability (%, in VS)

COD added:

Chemical oxygen demand added to the reactors (kg COD)

COD:

Chemical oxygen demand (kg; kg O2/kg)

D.L.:

Detection limit

NH3 :

Free ammonia (mg/L)

GAL:

Glucose, sodium acetate, and lactic acid solution

G T :

Experimental maximum methane volume (m3)

MS:

Total mineral solids (kg/kg)

N-NH4 + :

Ammoniacal nitrogen (kg/m3; kg/kg)

OLR:

Organic loading rate (kg/(m3 · d))

P soluble :

Soluble phosphorus (kg/m3)

P total :

Total phosphorus (kg/kg)

r G :

Methane production rate (m3/kg VS · d)

SFWM:

Strawberry and fish waste mixture

STP:

Standard temperature and pressure conditions

TAN:

Total ammoniacal nitrogen (mg/L)

TS:

Total solids (kg/m3; kg/kg)

VA:

Volatile acidity (kg acetic acid/m3)

VA/Alk ratio:

Ratio between VA and Alk (eq acetic acid/eq CaCO3)

VS:

Total volatile solids (kg/m3kg; kg/kg)

VSadded :

Added total volatile solids (kg)

wt:

Wet basis

WWTP:

Wastewater treatment plant

References

  1. FAOSTAT http://faostat.fao.org/site/567/default.aspx#ancor (accessed 3.14.2013).

  2. Ayalon, O., Avnimelech, Y., & Shechter, M. (2001). Environmental Management, 27, 697–704.

    Article  CAS  Google Scholar 

  3. Rødsrud, G., Lersch, M., & Sjöde, A. (2012). Biomass Bioenergy, 46, 46–59.

    Article  Google Scholar 

  4. Verstraete, W. (2010). Special Abstracts/Journal of Biotechnology, 150S, S1–S576.

    Google Scholar 

  5. Ahn, H. K., Smith, M. C., Kondrad, S. L., & White, J. W. (2010). Applied Biochemistry and Biotechnology, 160, 965–975.

    Article  CAS  Google Scholar 

  6. Forgács, G., Lundin, M., Taherzadeh, M. J., & Sárvári Horváth, I. (2013). Applied Biochemistry and Biotechnology, 169, 2016–2028.

    Article  Google Scholar 

  7. Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., & Ahring, B. K. (2003). Water Research, 37, 4561–4572.

    Article  CAS  Google Scholar 

  8. Wheatley, A. (1990). Anaerobic digestion: a waste treatment technology, ed. London: Elsevier.

    Google Scholar 

  9. Fountoulakis, M. S., Petousi, I., & Manios, T. (2010). Waste Management, 30, 1849–1853.

    Article  CAS  Google Scholar 

  10. Siles, J. A., Serrano, A., Martín, A., & Martín, M. A. (2013). Journal of Cleaner Production, 42, 190–197.

    Article  CAS  Google Scholar 

  11. Chen, Y., Chen, J. J., & Creamer, K. S. (2008). Bioresource Technology, 99, 4044–4064.

    Article  CAS  Google Scholar 

  12. Nges, I. A., Mbatia, B., & Björnsson, L. (2012). Journal of Environmental Management, 110, 159–165.

    Article  CAS  Google Scholar 

  13. Mshandete, A., Kivaisi, A., Rubindamayugi, M., & Mattiasson, B. (2004). Bioresource Technology, 95, 19–24.

    Article  CAS  Google Scholar 

  14. Serrano, A., Siles, J. A., Chica, A. F., & Martín, M. A. (2013). Journal of Cleaner Production, 54, 125–132.

    Article  CAS  Google Scholar 

  15. APHA (1989) “Standard methods for the examination of water and wastewater”, APHA, AWWA & WPCF.

  16. US Composting Council (2001) Test methods for the examination of composting and compost.

  17. Álvarez, J. A., Otero, L., & Lema, J. M. (2010). Bioresource Technology, 101, 1153–1158.

    Article  Google Scholar 

  18. Hills, D. J. (1979). Agricultural Wastes, 1, 267–278.

    Article  CAS  Google Scholar 

  19. Cheng, F., Boe, K., & Angelidaki, I. (2011). Water Research, 45, 3473–3480.

    Article  Google Scholar 

  20. Ortega, L., Husser, C., Barrington, S., & Guiot, S. R. (2008). Water Science and Technology, 57, 419–422.

    Article  CAS  Google Scholar 

  21. Aiyuk, S., Forrez, I., Lieven, D. K., van Haandel, A., & Verstraete, W. (2006). Bioresource Technology, 97, 2225–2241.

    Article  CAS  Google Scholar 

  22. Field, J., Sierra-Alvarez, R., Lettinga, G. (1988). Ensayos anaerobios (Anaerobic assays). 4° Seminario de Depuración Anaerobia de Aguas Residuales. Universidad de Valladolid, Spain.

  23. Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1978). Journal of the Fisheries Research Board of Canada, 32, 2379–2383.

    Article  Google Scholar 

  24. Østergaard, N. (1985). Biogasproduktion i det thermofile temperaturinterval. STUB rapport nr. 21. Kemiteknik Dansk Teknologisk Institut, Taastrup, Denmark.

  25. Fannin, K.F. (1987). in Anaerobic digestion of biomass: start-up, operation, stability and control (Chynoweth, D.P., Isaacson, R., ed.), Elsevier, London, UK, p. 171-196.

  26. Balaguer, M. D., Vicent, M. T., & Paris, J. M. (1992). Biotechnology Letters, 14, 433–438.

    Article  CAS  Google Scholar 

  27. Fernández, R. (2001). Diploma de Estudios Avanzados. Córdoba: Universidad de Córdoba.

    Google Scholar 

  28. Eiroa, M., Costa, J. C., Alves, M. M., Kennes, C., & Veiga, M. C. (2012). Waste Management, 32, 1347–1352.

    Article  CAS  Google Scholar 

  29. Dai, X., Duan, N., Dong, B., & Dai, L. (2013). Waste Management, 33, 308–316.

    Article  CAS  Google Scholar 

  30. Gebauer, R. (2004). Bioresource Technology, 93, 155–167.

    Article  CAS  Google Scholar 

  31. Carlsson, M., Lagerkvist, A., & Morgan-Sagastume, F. (2012). Waste Management, 32, 1634–1650.

    Article  CAS  Google Scholar 

  32. Macauley, J., Qiang, Z., Adams, C., Surampalli, R., & Mormile, M. (2006). Water Research, 40, 2017–2026.

    Article  CAS  Google Scholar 

  33. Nallathambi, V. (1998). Biomass Bioenergy, 14, 179–184.

    Article  Google Scholar 

  34. Britz, T. J., Noeth, C., & Lategan, P. M. (1988). Water Research, 22, 163–169.

    Article  CAS  Google Scholar 

  35. Alphenaar, P. A., Sleyster, R., Reuver, P., Ligthart, G. J., & Lettinga, G. (1993). Water Research, 27, 749–756.

    Article  CAS  Google Scholar 

  36. Lin, C. Y., & Lay, C. H. (2004). International Journal of Hydrogen Energy, 29, 275–281.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the ADESVA Technology Center and the HUDISA S.A. Company of Huelva, Spain, as well as the Spanish Ministry of Science and Innovation for funding this research through Project CTM2011-26350. We also wish to express our gratitude to Inmaculada Bellido for her contribution to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ángeles Martín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, A., Siles, J.A., Gutiérrez, M.C. et al. Optimization of Anaerobic Co-digestion of Strawberry and Fish Waste. Appl Biochem Biotechnol 173, 1391–1404 (2014). https://doi.org/10.1007/s12010-014-0942-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0942-y

Keywords

Navigation