Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1092–1103 | Cite as

Effect of Nickel–Cobaltite Nanoparticles on Production and Thermostability of Cellulases from Newly Isolated Thermotolerant Aspergillus fumigatus NS (Class: Eurotiomycetes)

  • Neha Srivastava
  • Rekha Rawat
  • Reetika Sharma
  • Harinder Singh OberoiEmail author
  • Manish Srivastava
  • Jay Singh
Article

Abstract

In the present study, effect of nickel–cobaltite (NiCo2O4) nanoparticles (NPs) was investigated on production and thermostability of the cellulase enzyme system using newly isolated thermotolerant Aspergillus fumigatus NS belonging to the class Euratiomycetes. The NiCo2O4 NPs were synthesized via hydrothermal method assisted by post-annealing treatment and characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In the absence of NPs in the growth medium, filter paper cellulase (FP) activity of 18 IU/gds was achieved after 96 h, whereas 40 % higher FP activity in 72 h was observed with the addition of 1 mM concentration of NPs in the growth medium. Maximum production of endoglucanase (211 IU/gds), β-glucosidase (301 IU/gds), and xylanase (803 IU/gds) was achieved after 72 h without NPs (control), while in the presence of 1 mM concentration of NPs, endoglucanase, β-glucosidase, and xylanase activity increased by about 49, 53, and 19.8 %, respectively, after 48 h of incubation, against control, indicating a substantial increase in cellulase productivity with the addition of NiCo2O4 NPs in the growth medium. Crude enzyme was thermally stable for 7 h at 80 °C in presence of NPs, as against 4 h at the same temperature for control samples. Significant increase in the activity and improved thermal stability of cellulases in the presence of the NiCo2O4 NPs holds potential for use of NiCo2O4 NPs during enzyme production as well as hydrolysis. From the standpoint of biofuel production, these results hold enormous significance.

Keywords

Aspergillus fumigatus NS Cellulases Enzyme productivity Eurotiomycetes Nickel–cobalt oxide nanoparticles Thermostability 

Notes

Acknowledgments

Authors Neha Srivastava, Rekha Rawat, Reetika Sharma, and Harinder Singh Oberoi thankfully acknowledge the financial assistance received from the AMAAS subproject funded by the Indian Council of Agricultural Research, Government of India for conducting this study. Author Jai Singh acknowledges the Department of Science & Technology, Government of India for awarding the DST-INSPIRE Fellowship [IFA-13 CH-105] 2013 and DST Young Scientist award (CS-393/2012).

References

  1. 1.
    Lynd, L. R., Weimer, P. J., Vanzyl, W. H., & Pretorious, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRefGoogle Scholar
  2. 2.
    Saboto, D., Nucci, R., Rossi, M., Gryczynski, I., Gryczyniski, Z., & Lakowicz, J. (1999). Biophyshysical Chemistry, 81, 23–31.CrossRefGoogle Scholar
  3. 3.
    Demirijan, D., Moris-Varas, F., & Cassidy, C. (2001). Current Opinion in Chemical Biology, 5, 144–151.CrossRefGoogle Scholar
  4. 4.
    Haki, G. D., & Rakshit, S. K. (2003). Bioresource Technology, 89, 17–34.CrossRefGoogle Scholar
  5. 5.
    Turner, P., Mamo, G., & Karlsson, E. N. (2007). Microbial Cell Factories, 6, 9. doi: 10.1185/1475-2859-6-9.CrossRefGoogle Scholar
  6. 6.
    Swaroopa, R. D., Thirumale, S., & Nand, K. (2004). Biotechnology, 20, 629–632.Google Scholar
  7. 7.
    Liu, Y. J., & Hall, B. D. (2004). Proceedings of National Academy Sciences USA, 101, 4507–4512.CrossRefGoogle Scholar
  8. 8.
    Geiser, D. M., Gueiden, C., Miadlikowska, J., Lutzoni, F., Kauff, F., Hofstetter, V., et al. (2006). Mycologia, 98, 1053–1064.CrossRefGoogle Scholar
  9. 9.
    Polizeli, M., Rizzatti, A., Monti, R., Terenzi, H., Jorge, J., & Amorim, D. (2005). Applied and Microbiology Biotechnology, 67, 577–5791.CrossRefGoogle Scholar
  10. 10.
    Solomon, B. D., Barnes, J. R., & Halvorsen, K. E. (2007). Biomass and Bioenergy, 6, 416–425.CrossRefGoogle Scholar
  11. 11.
    Kang, S., Park, Y., Lee, J., Hong, S., & Kim, S. (2004). Bioresource Technology, 91, 153–156.CrossRefGoogle Scholar
  12. 12.
    Lynch, I., & Dawson, K. A. (2008). Nanotoday, 3, 40–47.CrossRefGoogle Scholar
  13. 13.
    Chronopoulou, L., Kamel, G., Sparago, C., Bordi, F., Lupi, S., Diociaiutic, M., et al. (2011). Soft Material, 7, 2653–2662.CrossRefGoogle Scholar
  14. 14.
    Pendry. (1999). Science, 285, 1687–1688.CrossRefGoogle Scholar
  15. 15.
    Hudson, S. D., Jung, H. T., Percec, V., Johansson, W. D., Cho, G., & Balagurusamy, K. (1997). Science, 278, 449–452.CrossRefGoogle Scholar
  16. 16.
    Konwarh, R., Karak, N., Rai, S. K., & Mukherjee, A. K. (2009). Nanotechnology, 20, 225107–225117.CrossRefGoogle Scholar
  17. 17.
    Srivastava, M., Uddin, M. E., Singh, J., Kim, N. H., & Lee, J. E. (2014). Journal of Alloys and Compounds, 590, 266–276.CrossRefGoogle Scholar
  18. 18.
    Mandels, M., & Weber, J. (1969). Advances in Chemistry, 95, 391–414.CrossRefGoogle Scholar
  19. 19.
    Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). Current Microbiology, 57, 503–507.CrossRefGoogle Scholar
  20. 20.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  21. 21.
    Ghosh, T. (1987). Pure and Applied Chemistry, 59, 257–268.Google Scholar
  22. 22.
    Kubicek, C. P. (1982). Archives Microbiology, 132, 349–354.CrossRefGoogle Scholar
  23. 23.
    Saratale, G. D., Saratale, R. G., Lo, Y. C., & Chang, J. S. (2010). Biotechnology Progress, 26, 406–416.Google Scholar
  24. 24.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  25. 25.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  26. 26.
    Teeri, T. T. (1997). Trends in Biotechnology, 15, 160–167.CrossRefGoogle Scholar
  27. 27.
    Ding, R., Qi, L., & Wang, H. (2012). Journal of Solid State Electrochemistry, 16, 3621–3633.CrossRefGoogle Scholar
  28. 28.
    Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). World Journal of Nano Science and Engineering, 2, 154–160.CrossRefGoogle Scholar
  29. 29.
    Srivastava, M., Ojha, A. K., Chaubey, S., & Singh, J. (2010). Journal of Solid State Chemistry, 183, 2669–2674.CrossRefGoogle Scholar
  30. 30.
    Christakopoulos, P., Goodenough, P. W., Kekos, D., Macris, B. J., Claeyssens, M., & Bhat, M. K. (1994). European Journal of Biochemistry, 224, 379–385.CrossRefGoogle Scholar
  31. 31.
    Huang, L. D., Zheng, G. M., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., et al. (2010). Journal of Chemosphere, 81, 1091–1097.CrossRefGoogle Scholar
  32. 32.
    Lupoi, J. S., & Smith, E. A. (2011). Biotechnology Bioengineering, 108, 2835–2843.CrossRefGoogle Scholar
  33. 33.
    Blanchette, C., Lacayo, C. I., Fischer, N. O., Hwang, M., & Thelen, M. P. (2012). Public Library of Science One, 7, e42116. doi: 10.1371/journal.pone.0042116.Google Scholar
  34. 34.
    Mukhopadhyay, A., Dasgupta, A. K., Chattopadhyay, D., & Chakrabarti, K. (2012). Bioresource Technology, 116, 348–354.CrossRefGoogle Scholar
  35. 35.
    Shah, V., & Nerud, F. (2002). Canadian Journal of Microbiology, 48, 857–870.CrossRefGoogle Scholar
  36. 36.
    Wei, T. Y., Chen, C. H., Chien, H. C., Lu, S. Y., & Hu, C. C. (2010). Advanced Material, 22, 347–351.CrossRefGoogle Scholar
  37. 37.
    Rombouts, F. M., & Pilnik, W. (1986). Symbiosis, 2, 79–90.Google Scholar
  38. 38.
    Tao, M. Y., Xu, Q. X., Liang, S. M., Jaun, G., Bing, X. W., Long, M. N., et al. (2011). Journal of Agriculture and Food Chemistry, 59, 10971–10975.CrossRefGoogle Scholar
  39. 39.
    Hegedus, I., & Nagy, E. (2009). Hungarian Journal of Industrial Chemistry Veszprem, 37, 123–130.Google Scholar
  40. 40.
    Ang, S. K., Shaza, E. M., Adibah, Y., Suraini, A., & Madihah, M. S. (2013). Process Biochemistry, 48, 1293–1302.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Neha Srivastava
    • 1
  • Rekha Rawat
    • 1
  • Reetika Sharma
    • 1
  • Harinder Singh Oberoi
    • 1
    Email author
  • Manish Srivastava
    • 2
  • Jay Singh
    • 3
  1. 1.Central Institute of Post-Harvest Engineering and TechnologyLudhianaIndia
  2. 2.Department of BiotechnologyDelhi Technological UniversityDelhiIndia
  3. 3.Department of Applied ChemistryDelhi Technological UniversityDelhiIndia

Personalised recommendations