Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1032–1042 | Cite as

Response of Gelatin Modified Electrode towards Sensing of Different Metabolites

  • Kamla Rawat
  • Pratima R. SolankiEmail author
  • Kavita Arora
  • H. B. BohidarEmail author
Article

Abstract

In this study, a very thin film of biocompatible gelatin B (GB) fabricated onto indium tin oxide (ITO)-coated glass substrate for electrochemical catalytic activity towards different metabolites has been investigated. The optical and electrochemical properties of bare GB/ITO electrode and with different metabolites were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and electrochemical techniques. The optical properties clearly indicate the structural and surface morphological changes on electrode surface. FTIR spectra showed displacement of the IR peaks towards smaller wave numbers, indicating possible existence of hydrogen bonding between the GB and metabolites. The catalytic behaviour of GB/ITO electrode towards ascorbic acid (AA), citric acid (CA), oxalic acid (OA), glucose (Glu), sucrose (Suc), lactose (Lac) and fructose (Fru) has been investigated by cyclic voltammetry (CV). The electrochemical response studies of GB/ITO electrode have been monitored with different metabolites in the range of 10–500 mg/dl. The sensitivity of GB/ITO electrode for AA and OA was found as 0.156 and 0.108 μA/(mg/dl cm−2) respectively. The results indicate that the GB/ITO electrode has higher specificity towards the AA and OA. The attractive properties of GB/ITO electrode provide the potential applications in the simultaneous detection of AA and OA. The excellent electrocatalytic behaviour of GB/ITO electrode may be useful towards the construction of electrochemical biosensors.

Keywords

Electrochemical biosensor Gelatin Ascorbic acid Oxalic acid 

Notes

Acknowledgments

We are thankful to the Advanced Research Instrumentation Facility of the University for allowing us access to FTIR, SEM and CV facility. This work was supported by a grant from the Department of Science and Technology, Government of India.

References

  1. 1.
    Kimmel, D. W., LeBlanc, G., Meschievitz, M. E., & Cliffel, D. E. (2012). Analytical Chemistry, 84, 685–707.CrossRefGoogle Scholar
  2. 2.
    Campas, M., Gariboa, D., & Prieto-Simon, B. (2012). Analyst, 137, 1055–1067.CrossRefGoogle Scholar
  3. 3.
    Solanki, P. R., Kaushik, A., Agrawal, V. V., & Malhotra, B. D. (2011). NPG Asia Materials, 3, 17–24.CrossRefGoogle Scholar
  4. 4.
    Kaushik, A., Khan, R., Solanki, P. R., Pandey, P., Alam, J., Ahmad, S., et al. (2008). Biosensors and Bioelectronics, 24, 676–683.CrossRefGoogle Scholar
  5. 5.
    Xu, T., Yang, Y., Yu, Y., Zhu, R., & Chen, H. (2013). Retina, 33(5), 1062–1069.CrossRefGoogle Scholar
  6. 6.
    Xu, J. H., Gao, F. P., Liu, X. F., Zeng, Q., et al. (2013). Chemical Communications, 49, 4462–4464.CrossRefGoogle Scholar
  7. 7.
    Jafari, J., Emami, S. H., Samadikuchaksaraei, A., Bahar, M. A., & Gorjipour, F. (2011). Biomedical Materials and Engineering, 21(2), 99–112.Google Scholar
  8. 8.
    Pulieri, E., Chiono, V., Ciardelli, G., Vozzi, G., Ahluwalia, A., Domenici, C., et al. (2008). Journal of Biomedical Materials Research. Part A, 86, 311–322.CrossRefGoogle Scholar
  9. 9.
    Sanwlani, S., & Bohidar, H. B. (2013). Journal of Physical Chemistry Biophysics, 3, 1–6.Google Scholar
  10. 10.
    Zandi, M., Mirzadeh, H., & Mayer, C. (2007). European Polymer Journal, 43, 1480–1486.CrossRefGoogle Scholar
  11. 11.
    Su, J. C., Liu, S. Q., Joshi, S. C., & Lam, Y. C. (2008). Journal Thermal Analysis and Calorimetry, 93(2), 495–501.CrossRefGoogle Scholar
  12. 12.
    Gornall, J. L., & Terentjev, E. M. (2008). Physical Review E, 77(031908), 1539–3755.Google Scholar
  13. 13.
    Sanwlani, S., Kumar, P., & Bohidar, H. B. (2011). The Journal of Physical Chemistry. B, 115.Google Scholar
  14. 14.
    Neffe, T., Loebus, A., Zaupa, A., Stoetzel, C., Müller, F. A., & Lendlein, A. (2011). Acta Biomaterialia, 7, 1693–1701.CrossRefGoogle Scholar
  15. 15.
    Farris, S., Song, J., & Huang, Q. (2010). Journal of Agricultural and Food Chemistry, 58, 998–1003.CrossRefGoogle Scholar
  16. 16.
    Cheng, M., Deng, J., Yang, F., Gong, Y., Zhao, N., & Zhang, X. (2003). Biomaterials, 24, 2871–2880.CrossRefGoogle Scholar
  17. 17.
    Wael, K. D., Verstraete, A., Vlierberghe, S. V., Dejonghe, W., Dubruel, P., & Adriaens, A. (2011). International Journal of Electrochemical Science, 6, 1810–1819.Google Scholar
  18. 18.
    Wael, K. D., Belder, S. D., Pilehvar, S., Steenberge, G. V., Herrebout, W., & Heering, H. A. (2012). Biosensors, 2, 101–113.CrossRefGoogle Scholar
  19. 19.
    Solanki, P. R., Kaushik, A., Ansari, A. A., Tiwari, A., & Malhotra, B. D. (2009). Sensors and Actuators B, 137, 727–735.CrossRefGoogle Scholar
  20. 20.
    Singh, S., Solanki, P. R., Pandey, M. K., & Malhotra, B. D. (2006). Analytica Chimica Acta, 568, 126–132.CrossRefGoogle Scholar
  21. 21.
    Yilmaz, S., Sadikoglu, M., Saglikoglu, G., Yagmur, S., & Askin, G. (2008). International Journal of Electrochemical Science, 3, 1534–1542.Google Scholar
  22. 22.
    Rockombenya, L. C., Ferauda, J. P., Queffelecb, B., Odea, D., & Tzedakisc, T. (2012). Electrochimica Acta, 66, 230–238.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Special Centre for NanosciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.School of Physical ScienceJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Advanced Instrument Research FacilityJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations