Skip to main content

Advertisement

Log in

Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Drinking water distribution systems are composed of various pipe materials and may harbor biofilms even in the continuous presence of disinfectants. Biofilms formation on five pipe materials (copper (Cu), polyethylene (PE), stainless steel (STS), cast iron (CI), and concrete-coated polycarbonate (CP)) within drinking water containing 1.20 mg/L free chlorine, was investigated by flow cytometry, heterotrophic plate counts, and denaturing gradient gel electrophoresis analysis. Results showed that the biofilms formation varied in pipe materials. The biofilm formed on CP initially emerged the highest biomass in 12 days, but CI presented the significantly highest biomass after 28 days, and Cu showed the lowest bacterial numbers before 120 days, while STS expressed the lowest bacterial numbers after 159 days. In the biofilm community structure, Moraxella osloensis and Sphingomonas sp. were observed in all the pipe materials while Bacillus sp. was detected except in the CP pipe and Stenotrophomonas maltophila was found from three pipe materials (Cu, PE, and STS). Other bacteria were only found from one or two pipe materials. It is noteworthy that there are 11 opportunistic pathogens in the 17 classified bacterial strains. This research has afforded crucial information regarding the influence of pipe materials on chlorine-resistant biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simoes, L. C., & Simoes, M. (2013). RSC Advances, 3, 2520–2533.

    Article  Google Scholar 

  2. Berry, D., Xi, C. W., & Raskin, L. (2006). Current Opinion in Biotechnology, 17, 297–302.

    Article  CAS  Google Scholar 

  3. Lin, W., Yu, Z., Chen, X., Liu, R., & Zhang, H. (2013). Applied Microbiology and Biotechnology, 97, 8393–8401.

    Article  CAS  Google Scholar 

  4. Wang, H., Masters, S., Hong, Y. J., Stallings, J., Falkinham, J. O., Edwards, M. A., et al. (2012). Environmental Science & Technology, 46, 11566–11574.

    Article  CAS  Google Scholar 

  5. Lehtola, M. J., Miettinen, I. T., Lampola, T., Hirvonen, A., Vartiainen, T., & Martikainen, P. J. (2005). Water Research, 39, 1962–1971.

    Article  CAS  Google Scholar 

  6. Chu, C. W., Lu, C. Y., Lee, C. M., & Tsai, C. (2003). Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 38, 1377–1388.

    Article  Google Scholar 

  7. Bachmann, R., & Edyvean, R. (2005). Biofilms, 2, 197–227.

    Article  Google Scholar 

  8. Jang, H. J., Choi, Y. J., & Ka, J. O. (2011). Journal of Microbiology and Biotechnology, 21, 115–123.

    Article  CAS  Google Scholar 

  9. Chowdhury, S. (2012). Environmental Monitoring and Assessment, 184, 6087–6137.

    Article  CAS  Google Scholar 

  10. Chen, L., Jia, R. B., & Li, L. (2013). Environmental Science, Processes & Impacts, 15, 1332–1340.

    Article  CAS  Google Scholar 

  11. Simoes, L. C., Simoes, M., Oliveira, R., & Vieira, M. J. (2007). Journal of Basic Microbiology, 47, 174–183.

    Article  CAS  Google Scholar 

  12. Zhang, M. L., Liu, W. J., Nie, X. B., Li, C. P., Gu, J. N., & Zhang, C. (2012). Microbes and Environments, 27, 443–448.

    Article  Google Scholar 

  13. Kwon, S., Moon, E., Kim, T. S., Hong, S., & Park, H. D. (2011). Microbes and Environments, 26, 149–155.

    Article  Google Scholar 

  14. Hong, P. Y., Hwang, C. C., Ling, F. Q., Andersen, G. L., LeChevallier, M. W., & Liu, W. T. (2010). Applied and Environmental Microbiology, 76, 5631–5635.

    Article  CAS  Google Scholar 

  15. Szabo, J. G., Impellitteri, C. A., Govindaswamy, S., & Hall, J. S. (2009). Water Research, 43, 5004–5014.

    Article  Google Scholar 

  16. APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association Inc.

    Google Scholar 

  17. Lehtola, M. J., Miettinen, K. T., Keinanen, M. M., Kekki, T. K., Laine, O., Hirvonen, A., et al. (2004). Water Research, 38, 3769–3779.

    Article  CAS  Google Scholar 

  18. Lautenschlager, K., Boon, N., Wang, Y. Y., Egli, T., & Hammes, F. (2010). Water Research, 44, 4868–4877.

    Article  CAS  Google Scholar 

  19. Bassam, B. J., Caetanoanolles, G., & Gresshoff, P. M. (1991). Analytical Biochemistry, 196, 80–83.

    Article  CAS  Google Scholar 

  20. Zhang, W. D., & DiGiano, F. A. (2002). Water Research, 36, 1469–1482.

    Article  CAS  Google Scholar 

  21. Norton, C. D., & LeChevallier, M. W. (2000). Applied and Environmental Microbiology, 66, 268–276.

    Article  CAS  Google Scholar 

  22. Tsai, Y. P., Pai, T. Y., & Yang, Q. Z. (2008). Environmental Engineering Science, 25, 929–939.

    Article  CAS  Google Scholar 

  23. Codony, F., Morató, J., & Mas, J. (2005). Water Research, 39, 1896–1906.

    Article  CAS  Google Scholar 

  24. Maul, A., Vogost, D., & Block, J.-C. (1991). Microbiological analysis in water distribution networks: sampling strategies, methods and computer programs. New York: Ellis Horwood Publishers.

    Google Scholar 

  25. Holden, B., Greetham, M., Croll, B. T., & Scutt, J. (1995). Water Science and Technology, 32, 213–220.

    Article  CAS  Google Scholar 

  26. Vaz-Moreira, I., Egas, C., Nunes, O. C., & Manaia, C. M. (2013). Fems Microbiology Ecology, 83, 361–374.

    Article  CAS  Google Scholar 

  27. Xue, Z., Sendamangalam, V. R., Gruden, C. L., & Seo, Y. (2012). Environmental Science & Technology, 46, 13212–13219.

    Article  CAS  Google Scholar 

  28. Percival, S. L., Knapp, J. S., Edyvean, R., & Wales, D. S. (1998). Water Research, 32, 243–253.

    Article  CAS  Google Scholar 

  29. Appenzeller, B. M. R., Yanez, C., Jorand, F., & Block, J. C. (2005). Applied and Environmental Microbiology, 71, 5621–5623.

    Article  CAS  Google Scholar 

  30. Chang, L., & Craik, S. (2012). Ozone: Science & Engineering, 34, 243–251.

    Article  CAS  Google Scholar 

  31. Douterelo, I., Sharpe, R. L., & Boxall, J. B. (2013). Water Research, 47, 503–516.

    Article  CAS  Google Scholar 

  32. McCoy, S. T., & VanBriesen, J. M. (2012). Journal of Environmental Engineering, ASCE, 138, 786–795.

    Article  CAS  Google Scholar 

  33. Poitelon, J.-B., Joyeux, M., Welte, B., Duguet, J.-P., Prestel, E., & DuBow, M. S. (2010). Journal of Industrial Microbiology & Biotechnology, 37, 117–128.

    Article  CAS  Google Scholar 

  34. Lee, D. G., Lee, J. H., & Kim, S. J. (2005). World Journal of Microbiology and Biotechnology, 21, 155–162.

    Article  CAS  Google Scholar 

  35. Mathieu, L., Bouteleux, C., Fass, S., Angel, E., & Block, J. C. (2009). Water Research, 43, 3375–3386.

    Article  CAS  Google Scholar 

  36. Pelayo, J. S., Carnio, J., Ito, F. A. N., Kotaka, C. R., Fuganti, M. R., & Garcia, L. B. (2012). Revista Sul-Brasileira de Odontologia, 9, 245–253.

    Google Scholar 

  37. Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Nature Reviews Microbiology, 4, 752–764.

    Article  CAS  Google Scholar 

  38. Shane, W. T., Szabo, J. G., & Bishop, P. L. (2011). Environmental Technology, 32, 847–855.

    Article  CAS  Google Scholar 

  39. Elhariry, H. M. (2011). Food Microbiology, 28, 1266–1274.

    Article  Google Scholar 

  40. Luo, J., Liang, H., Yan, L., Ma, J., Yang, Y., & Li, G. (2013). Bioresource Technology, 148, 189–195.

    Article  CAS  Google Scholar 

  41. Pavissich, J. P., Vargas, I. T., Gonzalez, B., Pasten, P. A., & Pizarro, G. E. (2010). Journal of Applied Microbiology, 109, 771–782.

    Article  CAS  Google Scholar 

  42. Kjellerup, B. B., Kjeldsen, K. U., Lopes, F., Abildgaard, L., Ingvorsen, K., Frølund, B., et al. (2009). Biofouling, 25, 727–737.

    Article  CAS  Google Scholar 

  43. Wang, Y., Zhang, X. J., Feng, S., Niu, Z. B., & Chen, C. (2009). Annals of Microbiology, 59, 353–358.

    Article  CAS  Google Scholar 

  44. Tauch, A., Kaiser, O., Hain, T., Goesmann, A., Weisshaar, B., Albersmeier, A., et al. (2005). Journal of Bacteriology, 187, 4671–4682.

    Article  CAS  Google Scholar 

  45. Hilbi, H., & Haas, A. (2012). Traffic, 13, 1187–1197.

    Article  CAS  Google Scholar 

  46. Spilker, T., Uluer, A. Z., Marty, F. M., Yeh, W. W., Levison, J. H., Vandamme, P., et al. (2008). Journal of Clinical Microbiology, 46, 2774–2777.

    Article  Google Scholar 

  47. Lu, P. P., Chen, C., Wang, Q. F., Wang, Z., Zhang, X. J., & Xie, S. G. (2013). Biotechnology and Bioprocess Engineering, 18, 119–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Natural Science Foundation for Youth of China (51108123) and State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (2014TS08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 64.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Wu, C., Zhong, D. et al. Effects of Pipe Materials on Chlorine-resistant Biofilm Formation Under Long-term High Chlorine Level. Appl Biochem Biotechnol 173, 1564–1578 (2014). https://doi.org/10.1007/s12010-014-0935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0935-x

Keywords

Navigation