Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1021–1031 | Cite as

Silver Nanoparticles Synthesized by Pulsed Laser Ablation: as a Potent Antibacterial Agent for Human Enteropathogenic Gram-Positive and Gram-Negative Bacterial Strains

  • Jitendra Kumar PandeyEmail author
  • R. K. Swarnkar
  • K. K. Soumya
  • Priyanka Dwivedi
  • Manish Kumar SinghEmail author
  • Shanthy Sundaram
  • R. Gopal
Article

Abstract

Present investigation deals with the study, to quantify the antibacterial property of silver nanoparticles (SNPs), synthesized by pulsed laser ablation (PLA) in aqueous media, on some human enteropathogenic gram-positive and gram-negative bacterial strains. Antibacterial property was studied by measuring the zone of inhibition using agar cup double-diffusion method, minimum inhibitory concentration by serial dilution method, and growth curve for 24 h. The results clearly show the potency of antibacterial property of PLA-synthesized SNPs and suggest that it can be used as an effective growth inhibitor against various pathogenic bacterial strains in various medical devices and antibacterial control systems.

Keywords

Agar cup double diffusion Antibacterial agent Growth curve Minimum inhibitory concentration (MIC) Pulsed laser ablation in aqueous media Silver nanoparticles 

Notes

Acknowledgments

The authors would like to acknowledge Dr. N. P. Lalla of UGC-DAE CSR, Indore, for TEM facility. Authors R. K. Swarnkar and R. Gopal are thankful to the Defense Research and Development Organization (DRDO), New Delhi, for financial assistance.

References

  1. 1.
    Jones, S. A., Bowler, P. G., Walker, M., & Parsons, D. (2004). Wound Repair and Regeneration, 12, 288–294.CrossRefGoogle Scholar
  2. 2.
    R. Holladay, W. Moeller, D. Mehta, J. Brooks, R. Roy M. Mortenson, Application Number WO2005US47699 20051230 European Patent office 2006.Google Scholar
  3. 3.
    Silver, S., & Phung, L. T. (1996). Annual Review of Microbiology, 50, 753–789.CrossRefGoogle Scholar
  4. 4.
    Catauro, M., Raucci, M. G., De Gaetano, F. D., & Marotta, A. (2004). Journal of Materials Science Materials in Medicine, 15, 831–837.CrossRefGoogle Scholar
  5. 5.
    Crabtree, J. H., Burchette, R. J., Siddiqi, R. A., Huen, I. T., Handott, L. L., & Fishman, A. (2003). Peritoneal Dialysis International, 23, 368–374.Google Scholar
  6. 6.
    Cristóbal, L. F. E., Castañón, G. A. M., Martínez, R. E. M., Rodríguez, J. P. L., Marín, N. P., Macías, J. F. R., & Ruiz, F. (2009). Materials Letters, 63, 2603–2606.CrossRefGoogle Scholar
  7. 7.
    Sotiriou, G. A., & Pratsinis, S. E. (2010). Environmental Science and Technology, 44, 5649–5654.CrossRefGoogle Scholar
  8. 8.
    Cao, X. L., Cheng, C., Ma, Y. L., & Zhao, C. S. (2010). Journal of Materials Science Materials in Medicine, 21, 2861–2868.CrossRefGoogle Scholar
  9. 9.
    Shirley, A. D., Sreedhar, B., & Dastager, S. G. (2010). Digest Journal of Nanomaterials and Biostructures, 5, 44–51.Google Scholar
  10. 10.
    Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Spectrochimica Acta Part A, 79, 594–598.CrossRefGoogle Scholar
  11. 11.
    Pal, S., Tak, Y. K., & Song, J. M. D. (2007). Applied and Environmental Microbiology, 73, 1712–1720.CrossRefGoogle Scholar
  12. 12.
    Guzmán, M. G., Dille, J., & Godet, S. (2009). International Journal of Chemical and Biomolecular Engineering, 2, 104–111.Google Scholar
  13. 13.
    Kawashita, M., Tsuneyama, S., Miyaji, F., Kokubo, T., Kozuka, H., & Yamamoto, K. (2000). Biomaterials, 21, 393–398.CrossRefGoogle Scholar
  14. 14.
    Xu, X., Yang, Q., Wang, Y., Yu, H., Chen, X., & Jing, X. (2006). European Polymer Journal, 42, 2081–2087.CrossRefGoogle Scholar
  15. 15.
    Jaiswal, S., Duffy, B., Jaiswal, A. K., Stobie, N., & McHale, P. (2010). International Journal of Antimicrobial Agents, 36, 280–283.CrossRefGoogle Scholar
  16. 16.
    Kora, A. J., Manjusha, R., & Arunachalam, J. (2009). Materials Science and Engineering C, 29, 2104–2109.CrossRefGoogle Scholar
  17. 17.
    Gupta, P., Bajpai, M., & Bajpai, S. K. (2008). The Journal of Cotton Science, 12, 280–286.Google Scholar
  18. 18.
    Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., Scarpa, T., Semeraro, S., Turco, G., Gennaro, R., & Paoletti, S. (2009). Biomacromolecules, 10, 1429–1435.CrossRefGoogle Scholar
  19. 19.
    Swarnkar, R. K., Singh, S. C., & Gopal, R. (2011). Bulletin of Materials Science, 34, 1363–1369.CrossRefGoogle Scholar
  20. 20.
    Singh, M. K., Agarwal, A., Gopal, R., Swarnkar, R. K., & Kotnala, R. K. (2011). Journal of Materials Chemistry, 21, 11074–11079.CrossRefGoogle Scholar
  21. 21.
    Nath, A., Das, A., Rangan, L., & Khare, A. (2012). Science of Advanced Materials, 4, 106–109.CrossRefGoogle Scholar
  22. 22.
    Williams, R. L., Doherty, P. J., Vince, D. G., Grashoff, G. J., & Williams, D. F. (1989). Criticism Review Biocompa, 5, 221–243.Google Scholar
  23. 23.
    Berger, T. J., Spadaro, J. A., Chapin, S. E., & Becker, R. O. (1976). Antimicrobial Agents and Chemotherapy, 9, 357–358.CrossRefGoogle Scholar
  24. 24.
    Zeng, H., Du, X. W., Singh, S. C., Kulinich, S. A., Yang, S., He, J., & Cai, W. (2012). Advanced Functional Materials, 22, 1333–1353.CrossRefGoogle Scholar
  25. 25.
    Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). Journal of Biomedical Materials Research, 52, 662–668.CrossRefGoogle Scholar
  26. 26.
    Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). Nanotechnology, 16, 2346–2353.CrossRefGoogle Scholar
  27. 27.
    Hamouda, T., & Baker, J. R., Jr. (2000). Journal of Applied Microbiology, 89, 397–403.CrossRefGoogle Scholar
  28. 28.
    Sondi, I., & Salopek-Sondi, B. (2004). Journal of Colloid and Interface Science, 275, 177–182.CrossRefGoogle Scholar
  29. 29.
    Jones, C. M., & Hoek, E. M. V. (2010). Journal of Nanoparticle Research, 12, 1531–1551.CrossRefGoogle Scholar
  30. 30.
    Guzmán, M. G., Dille, J., & Godet, S. (2012). Nanomedicine, 8, 37–45.CrossRefGoogle Scholar
  31. 31.
    Perez, C., Paul, M., & Bazerque, P. (1990). Acta Biology Medicine Experiment, 15, 113–115.Google Scholar
  32. 32.
    Deore, S. L., & Khadabadi, S. S. (2008). Rasayan Journal of Chemistry, 1, 887–892.Google Scholar
  33. 33.
    Zhang, Y. J., Nagao, T., Tanaka, T., Yang, C. R., Okabe, H., & Kouno, I. (2004). Pharmaceutical Bulletin, 27, 251–255.CrossRefGoogle Scholar
  34. 34.
    Bonjar, G. H. S., & Nik, A. K. (2004). Asian Journal of Plant Sciences, 3, 61–64.CrossRefGoogle Scholar
  35. 35.
    Irith, W., Kai, H., & Robert, E. W. (2008). Nature Protocols, 3, 163–175.CrossRefGoogle Scholar
  36. 36.
    Bassam, A. S., Ghaleb, A., Dahood, A. S., Naser, J., & Kamel, A. (2006). Turkish Journal of Biology, 30, 195–198.Google Scholar
  37. 37.
    Song, H. Y., Ko, K. K., Oh, I. H., & Lee, B. T. (2006). European Cells Materials, 11, 58–59.Google Scholar
  38. 38.
    Tenover, F. C. (2006). American Journal of Medicine, 119, 3–10.CrossRefGoogle Scholar
  39. 39.
    Choi, O., Deng, K., Kim, N., Ross, L., Surampalli, R., & Hu, Z. (2008). Water Research, 42, 3066–3074.CrossRefGoogle Scholar
  40. 40.
    Raffi, M., Hussain, F., Bhatti, T., Akhter, J., Hameed, A., & Hasan, M. (2008). Journal of Materials Science and Technology, 24, 192–196.Google Scholar
  41. 41.
    Gibbins, B., & Warner, L. (2005). Medicine Device Diagnostic Industry Magazine, 1, 1–2.Google Scholar
  42. 42.
    Russell, A. D., & Hugo, W. B. (1994). Progress in Medicinal Chemistry, 31, 351–370.CrossRefGoogle Scholar
  43. 43.
    Dibrov, P., Dzioba, J., Gosink, K. K., & Hase, C. C. (2002). Antimicrobial Agents and Chemotherapy, 46, 2668–2670.CrossRefGoogle Scholar
  44. 44.
    Holt, K. B., & Bard, A. J. (2005). Biochemistry, 44, 13214–13223.CrossRefGoogle Scholar
  45. 45.
    Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Nanotechnology, 18(225103), 9.Google Scholar
  46. 46.
    Rai, M., Yadav, A., & Gade, A. (2009). Biotechnology Advances, 27, 76–83.CrossRefGoogle Scholar
  47. 47.
    Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., & Schlager, J. J. (2008). Journal of Physical Chemistry B, 112, 13608–13619.CrossRefGoogle Scholar
  48. 48.
    Nel, A., Xia, T., Madler, L., & Li, N. (2006). Science, 311, 622–627.CrossRefGoogle Scholar
  49. 49.
    Mendis, E., Rajapakse, N., Byun, H., & Kim, S. (2005). Life Sciences, 77, 2166–2178.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jitendra Kumar Pandey
    • 1
    Email author
  • R. K. Swarnkar
    • 1
  • K. K. Soumya
    • 2
  • Priyanka Dwivedi
    • 2
  • Manish Kumar Singh
    • 3
    Email author
  • Shanthy Sundaram
    • 2
  • R. Gopal
    • 1
  1. 1.Laser Spectroscopy and Nanomaterials Lab, Department of Physics (UGC-CAS)University of AllahabadAllahabadIndia
  2. 2.Centre for BiotechnologyUniversity of AllahabadAllahabadIndia
  3. 3.Department of PhysicsThe LNM Institute of Information TechnologyJaipurIndia

Personalised recommendations