Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 971–983 | Cite as

Ultrasensitive Electrochemical Immunosensor Based on Pt Nanoparticle–Graphene Composite

  • Shobhita Singal
  • A. M. Biradar
  • Ashok Mulchandani
  • RajeshEmail author
Article

Abstract

We report a protein antibody, Ab-CRP, functionalized Pt nanoparticle-decorated chemical vapor deposition (CVD)-grown graphene on glassy carbon electrode, as a bioelectrode, for the quantitative analysis of human C-reactive protein (CRP). Chemical vapor deposition was used to grow a polycrystalline graphene film on copper and was mounted over a glassy carbon electrode after copper etching through π–π stacking. Ab-CRP was covalently immobilized on mercaptopropionic acid (MPA)-capped Pt nanoparticles that were covalently anchored over the graphene to form a bioelectrode. The bioelectrode was characterized by scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). A detail EIS study was conducted on the bioelectrode towards the quantitative detection of the target Ag-CRP in phosphate-buffered saline (PBS). The optimal electrical equivalent circuit that matches the impedance response of the bioelectrode was studied to delineate the biocompatibility, sensitivity, and selectivity of the bioelectrode. The bioelectrode exhibited a linear response of CRP detection in the range of 10 ng mL−1 to 10 μg mL−1 with a sensitivity of 92.86 Ωcm2 per decade CRP in pH 7.4 PBS.

Keywords

Antibody Microscopy Chemical vapor deposition Voltammetry 

Notes

Acknowledgments

We are grateful to Prof. R. C. Budhani, Director, National Physical Laboratory, New Delhi, India, for providing research facilities. One of the authors, Shobhita Singal, is thankful to CSIR for providing a junior research fellowship.

References

  1. 1.
    Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. (2004). Science, 306, 666–669.CrossRefGoogle Scholar
  2. 2.
    Pumera, M., & Miyahara, Y. (2009). Nanoscale, 1, 260–265.CrossRefGoogle Scholar
  3. 3.
    Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., & Lin, Y. (2010). Electroanalysis, 22, 1027–1036.CrossRefGoogle Scholar
  4. 4.
    Liang, M., & Zhi, L. (2009). Journal of Material Chemistry, 19, 5871–5878.CrossRefGoogle Scholar
  5. 5.
    Pumera, M. (2011). Materials Today, 14, 308–315.CrossRefGoogle Scholar
  6. 6.
    Bonanni, A., Loo, A. H., & Pumera, M. (2012). Trends in Analytical Chemistry, 37, 12–21.CrossRefGoogle Scholar
  7. 7.
    Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulvoic, V., et al. (2009). Nano Letters, 9, 30–35.CrossRefGoogle Scholar
  8. 8.
    Biswas, C., & Lee, Y. H. (2011). Advanced Functional Materials, 21, 3806–3826.CrossRefGoogle Scholar
  9. 9.
    Pumera, M. (2009). European Journal of Chemistry, 15, 4970–4978.CrossRefGoogle Scholar
  10. 10.
    Chen, J. L., Yan, X. P., Meng, K., & Wang, S. F. (2011). Analytical Chemistry, 83, 8787–8793.CrossRefGoogle Scholar
  11. 11.
    Alwarappan, S., Erdem, A., Liu, C., & Li, C. Z. (2009). Journal of Physical Chemistry C, 113, 8853–8857.CrossRefGoogle Scholar
  12. 12.
    Choi, B. G., Im, J., Kim, H. S., & Park, H. (2011). Electrochimica Acta, 56, 9721–9726.CrossRefGoogle Scholar
  13. 13.
    Roy, S., Soin, N., Bajpai, R., Misra, D. S., McLaughlin, J. A., & Roy, S. S. (2011). Journal of Material Chemistry, 21, 14725–14731.CrossRefGoogle Scholar
  14. 14.
    Chen, D., Tang, L., & Li, J. (2010). Chemical Society Reviews, 39, 3157–3180.CrossRefGoogle Scholar
  15. 15.
    Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., et al. (2007). Carbon, 45, 1558–1565.CrossRefGoogle Scholar
  16. 16.
    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., et al. (2006). Science, 312, 1191–1196.CrossRefGoogle Scholar
  17. 17.
    Pepys, M. B., & Hirschfield, G. M. (2003). Journal of Clinical Investigation, 111, 1805–1812.CrossRefGoogle Scholar
  18. 18.
    May, A., & Wang, T. J. (2007). Expert Review of Molecular Diagnostics, 7, 793–804.CrossRefGoogle Scholar
  19. 19.
    Miller, V. M., Redfield, M. M., & McConnell, J. P. (2007). Current Vascular Pharmacology, 5, 15–25.CrossRefGoogle Scholar
  20. 20.
    Mygind, N. D., Harutyunyan, M. J., Mathiasen, A. B., Ripa, R. S., Thune, J. J., Gotze, J. P., et al. (2011). Inflammation Research, 60, 281–287.CrossRefGoogle Scholar
  21. 21.
    Kushner, I., & Sehgal, A. R. (2002). Archives of Internal Medicine, 162, 867–869.CrossRefGoogle Scholar
  22. 22.
    Benzaquen, L. R., Yu, H., & Rifai, N. (2002). Critical Reviews in Clinical Laboratory Sciences, 39, 459–497.CrossRefGoogle Scholar
  23. 23.
    Ridker, P. M. (2004). American Heart Hospital Journal, 2, 4–9.Google Scholar
  24. 24.
    Lee, W. B., Chen, Y. H., Lin, H. I., Shiesh, S. C., & Lee, G. B. (2011). Sensors and Actuators, 157, 710–721.CrossRefGoogle Scholar
  25. 25.
    Roberts, W. L., Sedrick, R., Moulton, L., Spencer, A., & Rifai, N. (2000). Clinical Chemistry, 46, 461–468.Google Scholar
  26. 26.
    Roberts, W. L., Moulton, L., Law, T. C., Farrow, G., Cooper-Anderson, M., Savory, J., et al. (2001). Clinical Chemistry, 47, 418–425.Google Scholar
  27. 27.
    Macy, E. M., Hayes, T. E., & Tracy, R. P. (1997). Clinical Chemistry, 43, 52–58.Google Scholar
  28. 28.
    Pearson, T. A., Mensah, G. A., Hong, Y. L., & Smith, S. C. (2004). Circulation, 110, 543–544.CrossRefGoogle Scholar
  29. 29.
    Pei, R. J., Cheng, Z. L., Wang, E. K., & Yang, X. R. (2001). Biosensors and Bioelectronics, 16, 355–361.CrossRefGoogle Scholar
  30. 30.
    Katz, E., & Willner, I. (2003). Electroanalysis, 15, 913–947.CrossRefGoogle Scholar
  31. 31.
    Tang, D., Yuan, R., Chai, Y., Dai, J., Zhong, X., & Liu, Y. (2004). Bioelectrochemistry, 65, 15–22.CrossRefGoogle Scholar
  32. 32.
    Kongsuphol, P., Arya, S. K., Wong, C. C., Polla, L. J., & Park, M. K. (2014). Biosensors and Bioelectronics, 55, 26–31.CrossRefGoogle Scholar
  33. 33.
    Robertson, A. W., & Warner, J. H. (2011). Nano Letters, 11, 1182–1189.CrossRefGoogle Scholar
  34. 34.
    Teow, Y., & Valiyaveettil, S. (2010). Nanoscale, 2, 2607–2613.CrossRefGoogle Scholar
  35. 35.
    Lim, C. X., Hoh, H. Y., Ang, P. K., & Loh, K. P. (2010). Analytical Chemistry, 82, 7387–7393.CrossRefGoogle Scholar
  36. 36.
    Ou, Y. Y., & Huang, M. H. (2006). Journal of Physical Chemistry B, 110, 2031–2036.CrossRefGoogle Scholar
  37. 37.
    Mishra, S. K., Kumar, D., Biradar, A. M., & Rajesh. (2012). Bioelectrochemistry, 88, 118–126.CrossRefGoogle Scholar
  38. 38.
    Hennessey, H., Afara, N., Omanovic, S., & Padjen, A. L. (2009). Analytica Chimica Acta, 643, 45–53.CrossRefGoogle Scholar
  39. 39.
    Thomas, B., Luo, X., Bueno, P. R., & Davis, J. J. (2013). Biosensors and Bioelectronics, 39, 94–98.CrossRefGoogle Scholar
  40. 40.
    Buch, M., & Rishpon, J. (2008). Electroanalysis, 20, 2592–2594.CrossRefGoogle Scholar
  41. 41.
    Chen, X., Wang, Y., Zhou, J., Yan, W., Li, X., & Zhu, J. J. (2008). Analytical Chemistry, 80, 2133–2140.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shobhita Singal
    • 1
  • A. M. Biradar
    • 1
  • Ashok Mulchandani
    • 2
  • Rajesh
    • 1
    Email author
  1. 1.CSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations