Skip to main content

Advertisement

Log in

Synthesis of Nano-hydroxyapatite via Microbial Method and Its Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nanoparticles of hydroxyapatite were successfully synthesized by microbial method at ambient temperature and pressure, using calcium chloride and specific substrate as reactants. The compositional and morphological properties of products of the syntheses were studied by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The characterization data obtained showed that the phase composition, functional groups, and surface morphology of samples obtained by microbial method were mainly similar to that by chemical precipitation method. The hydroxyapatite powder was shown to be nanometer-grade in size and sphere-like in shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Que, W., Khor, K. A., Xu, J. L., & Yu, L. G. (2008). Journal of the European Ceramic Society, 28, 3083–3090.

    Article  CAS  Google Scholar 

  2. Enayati-Jazi, M., Solati-Hashjin, M., Nemati, A., & Bakhshi, F. (2012). Superlattices and Microstructures, 51, 877–885.

    Article  CAS  Google Scholar 

  3. Jinawath, S., Polchai, D., & Yoshimura, M. (2002). Materials Science and Engineering: C, 22, 35–39.

    Article  Google Scholar 

  4. Suchanek, W. L., Shuk, P., Byrappa, K., Riman, R. E., TenHuisen, K. S., & Janas, V. F. (2002). Biomaterials, 23, 699–710.

    Article  CAS  Google Scholar 

  5. Liu, D. M., Troczynski, T., & Yseng, W. J. (2001). Biomaterials, 22, 1721–1730.

    Article  CAS  Google Scholar 

  6. Masuda, Y., Matubara, K., & Sakka, S. (1990). Journal of the Ceramic Society of Japan, 98, 1255–1266.

    Article  CAS  Google Scholar 

  7. Yoon, S. Y., Park, Y. M., Park, S. S., Stevens, R., & Park, H. C. (2005). Materials Chemistry and Physics, 91, 48–53.

    Article  CAS  Google Scholar 

  8. Monma, H. T., & Kamiya. (1987). Journal of Materials Science, 22, 4247–4250.

    Article  CAS  Google Scholar 

  9. Kalita, S. J., Bhardwaj, A., & Bhatt, H. A. (2007). Materials Science and Engineering: C, 27, 441–449.

    Article  CAS  Google Scholar 

  10. Rao, R. R., Roopa, H. N., & Kannan, T. S. (1997). Journal of Materials Science: Materials in Medicine, 8, 511–518.

    CAS  Google Scholar 

  11. Correia, R. N., Magalhaes, M. C. F., Marques, P. A. A. P., & Senos, A. M. R. (1996). Journal of Materials Science: Materials in Medicine, 7, 501–505.

    CAS  Google Scholar 

  12. Wu, Y. S., Lee, Y. H., & Chang, H. C. (2009). Materials Science and Engineering: C, 29, 237–241.

    Article  CAS  Google Scholar 

  13. Whiffin, V. S. (2004). PhD thesis, Murdoch University, Australia.

  14. Chaturvedi, S., Chandra, R., & Rai, V. (2006). Ecological Engineering, 27, 202–207.

    Article  Google Scholar 

  15. De, M. W., De, B. N., & Verstraete, W. (2010). Ecological Engineering, 36, 118–136.

    Article  Google Scholar 

  16. Ivanov, V., & Chu, J. (2008). Reviews in Environmental Science and Biotechnology, 7, 139–153.

    Article  CAS  Google Scholar 

  17. Mostafa, N. Y. (2005). Materials Chemistry and Physics, 94, 333–341.

    Article  CAS  Google Scholar 

  18. Stipniece, L., Salma-Ancane, K., Borodajenko, N., Sokolova, M., Jakovlevs, D., & Berzina-Cimdina, L. (2014). Ceramics International, 40, 3261–3267.

    Article  CAS  Google Scholar 

  19. Salimi, M. N., & Anuar, A. (2013). Procedia Engineering, 53, 192–196.

    Article  CAS  Google Scholar 

  20. Webster, T. J., Siegel, R. W., & Bizios, R. (1999). Biomaterials, 20, 1221–1227.

    Article  CAS  Google Scholar 

  21. Pushpakanth, S., Srinivasan, B., Sreedhar, B., & Sastry, T. P. (2008). Materials Chemistry & Physics, 107, 492–498.

    Article  CAS  Google Scholar 

  22. Manjubala, I., Woesz, A., Pilz, C., Rumpler, M., Fratzl-Zelman, N., Roschger, P., et al. (2005). Journal of Materials Science: Materials in Medicine, 16, 1111–1119.

    CAS  Google Scholar 

  23. Jokic, B., Mitric, M., Radmilovic, V., Drmanic, S., Petrovic, R., & Janackovic, D. (2011). Ceramics International, 37, 167–173.

    Article  CAS  Google Scholar 

  24. Weiner, S., & Dove, P. M. (2003). Reviews in Mineralogy and Geochemistry, 54, 1–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant No. 51372038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunxiang Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qian, C. & Yu, X. Synthesis of Nano-hydroxyapatite via Microbial Method and Its Characterization. Appl Biochem Biotechnol 173, 1003–1010 (2014). https://doi.org/10.1007/s12010-014-0911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0911-5

Keywords

Navigation