Skip to main content
Log in

Improved Production of Poly-γ-Glutamic Acid by Bacillus subtilis D7 Isolated from Doenjang, a Korean Traditional Fermented Food, and Its Antioxidant Activity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objectives of this study was to improve poly-γ-glutamic acid (γ-PGA) production by Bacillus subtilis D7 isolated from a Korean traditional fermented food and to assess its antioxidant activity for applications in the cosmetics and pharmaceutical industries. Strain D7 produced γ-PGA in the absence of l-glutamic acid, indicating l-glutamic acid-independent production. However, the addition of l-glutamic acid increased γ-PGA production. Several tricarboxylic acid cycle intermediates and amino acids could serve as the metabolic precursors for γ-PGA production, and the addition of pyruvic acid and d-glutamic acid to culture medium improved the yield of γ-PGA markedly. The maximum yield of γ-PGA obtained was 24.93 ± 0.64 g/l in improved medium, which was about 5.4-fold higher than the yield obtained in basal medium. γ-PGA was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (46.8 ± 1.5 %), hydroxyl radical scavenging activity (52.0 ± 1.8 %), 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonate (ABTS) radical scavenging activity (42.1 ± 1.8 %), nitric oxide scavenging activity (35.1 ± 1.3 %), reducing power (0.304 ± 0.008), and metal chelating activity (91.3 ± 3.5 %). These results indicate that γ-PGA has a potential use in the food, cosmetics, and biomedical industries for the development of novel products with radical scavenging activity. As far as we are aware, this is the first report to describe the antioxidant activityof γ-PGA produced by bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shih, I. L., & Van, Y. T. (2001). The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 79, 207–225.

    Article  CAS  Google Scholar 

  2. Bajaj, I. B., & Singhal, R. S. (2011). Poly (glutamic acid)—an emerging biopolymer of commercial interest. Bioresource Technology, 102, 5551–5561.

    Article  CAS  Google Scholar 

  3. Buesher, J. M., & Margaritis, A. (2007). Microbial synthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Critical Reviews in Biotechnology, 27, 1–19.

    Article  Google Scholar 

  4. Choi, H. J., & Kunioka, M. (1995). Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid). Radiation Physics and Chemistry, 46, 175–179.

    Article  CAS  Google Scholar 

  5. Lee, C. Y., & Kuo, M. I. (2011). Effect of γ-polyglutamate on the rheological properties and microstructure of tofu. Food Hydrocolloides, 25, 1034–1040.

    Article  CAS  Google Scholar 

  6. Richard, A., & Margaritis, A. (2001). Poly(glutamic acid) for biomedical applications. Critical Reviews in Biotechnology, 21, 219–232.

    Article  CAS  Google Scholar 

  7. Ito, Y., Tanaka, T., Ohmachi, T., & Asada, Y. (1996). Glutamic acid independent production of poly(gamma-glutamic acid) by Bacillus subtilis TAM-4. Bioscience, Biotechnology, and Biochemistry, 60, 1239–1242.

    Article  CAS  Google Scholar 

  8. Kubota, H., Matsunobu, T., Uotani, K., Takebe, H., Satoh, A., Tanaka, T., et al. (1993). Production of poly(gamma-glutamic acid) by Bacillus subtilis F-2-01. Bioscience, Biotechnology, and Biochemistry, 57, 1212–1213.

    Article  CAS  Google Scholar 

  9. Bajaj, I. B., Lele, S. S., & Singhal, R. S. (2008). Enhanced production of poly(gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 in solid state fermentation. Journal of Industrial Microbiology and Biotechnology, 35, 1581–1586.

    Article  CAS  Google Scholar 

  10. Bajaj, I. B., & Singhal, R. S. (2009). Enhanced production of poly(gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Applied Biochemistry and Biotechnology, 159, 133–141.

    Article  CAS  Google Scholar 

  11. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal Biochemistry & Cell Biology, 39, 44–84.

    Article  CAS  Google Scholar 

  12. Hettiarachy, N. S., Glenn, K. C., Gnanasambandam, R., & Johnson, M. G. (1996). Natural antioxidant extract from fenugreek (Trigonella foenum-graecum) for ground beef patties. Journal of Food Science, 61, 516–519.

    Article  Google Scholar 

  13. Wan, H., Yuan, J., Shan, X., Wu, Q., & Shi, N. (2001). Structure and bio-properties of extracellular polysaccharide from Bacillus sp. strain LBP32 isolated from LUOBOPO desert. Biotechnology and Bioprocess Engineering, 16, 761–768.

    Article  Google Scholar 

  14. Lee, N.R., (2012). Production and functionality of amino acid biomaterial, poly-γ-glutamic acid by Bacillus subtilis D7 isolated from Doenjang, a traditional Korean fermented food. M.S. Thesis, Pusan National University, Korea.

  15. Yao, J., Xu, H., Shi, N., Cao, X., Feng, X., Li, S., et al. (2010). Analysis of carbon metabolism and improvement of gamma-polyglutamic acid production from Bacillus subtilis NX-2. Applied Biochemistry and Biotechnology, 160, 2332–2341.

    Article  CAS  Google Scholar 

  16. Goto, A., & Kunioka, M. (1992). Biosynthesis and hydrolysis of poly(gamma-glutamic acid) from Bacillus subtilis IFO 3335. Bioscience, Biotechnology, and Biochemistry, 56, 1031–1035.

    Article  CAS  Google Scholar 

  17. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200.

    Article  CAS  Google Scholar 

  18. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231–1237.

    Article  CAS  Google Scholar 

  19. Halliwell, B., Gutteridge, J. M. C., & Aruoma, O. I. (1987). The deoxyribose method: a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry, 165, 215–219.

    Article  CAS  Google Scholar 

  20. Marcocci, L., Maguire, J. J., Droylefaix, M. T., & Packer, L. (1994). The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochemical and Biophysical Research Communications, 201, 748–755.

    Article  CAS  Google Scholar 

  21. Oyaizu, M. (1986). Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Japanese Journal of Nutrition, 44, 307–315.

    Article  CAS  Google Scholar 

  22. Dinis, T. C. P., Madeira, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315, 161–169.

    Article  CAS  Google Scholar 

  23. Kunioka, M. (1995). Biosynthesis of poly (γ-glutamic acid) from l-glutamine, citric acid and ammonium sulfate in Bacillus subtilis IFO 3335. Applied Microbiology and Biotechnology, 44, 501–506.

    Article  CAS  Google Scholar 

  24. Xu, H., Jiang, M., Li, H., Lu, D., & Ouyang, P. (2005). Efficient production of poly(γ-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochemistry, 40, 519–523.

    Article  CAS  Google Scholar 

  25. Birrer, G. A., Cromwick, A. M., & Gross, R. A. (1994). γ-Poly(glutamic acid) formation by Bacillus licheniformis9945a: physiological and biochemical studies. International Journal of Biological Macromolecules, 16, 265–275.

    Article  CAS  Google Scholar 

  26. Chen, J., Shi, F., Zhang, B., Zhu, F., Cao, W., Xu, Z., et al. (2010). Effects of cultivation conditions on the production of gamma-PGA with Bacillus subtilis ZJU-7. Applied Biochemistry and Biotechnology, 160, 370–377.

    Article  CAS  Google Scholar 

  27. Leonard, C. G., Housewright, R. D., & Thorne, C. B. (1958). Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. Journal of Bacteriology, 76, 499–503.

    CAS  Google Scholar 

  28. Troy, F. A. (1973). Chemistry and biosynthesis of the poly(γ- d-glutamyl) capsule in Bacillus licheniformis. Journal of Biological Chemistry, 248, 305–315.

    CAS  Google Scholar 

  29. Jung, D. Y., Jung, S., Yun, J. S., Kim, J. N., Wee, Y. J., Jang, H. G., et al. (2005). Influences of cultural medium component on the production of poly(γ-glutamic acid) by Bacillus sp. RKY3. Biotechnology and Bioprocess Engineering, 10, 289–295.

    Article  CAS  Google Scholar 

  30. Thorne, C. B., Gomez, C. G., Noyes, H. E., & Housewright, R. D. (1954). Production of glutamyl polypeptide by Bacillus subtilis. Journal of Bacteriology, 68, 307–315.

    CAS  Google Scholar 

  31. Cromwick, A. M., Birrer, G. A., & Gross, R. A. (1996). Effects of pH and aeration on γ-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnology and Bioengineering, 50, 222–227.

    Article  CAS  Google Scholar 

  32. Zhang, D., Xu, Z., Xu, H., Feng, X., Li, S., Cai, H., et al. (2011). Improvement of poly(γ-glutamic acid) biosynthesis and quantitative metabolic flux analysis of a two-stage strategy for agitation speed control in the culture of Bacillus subtilis NX-2. Biotechnology and Bioprocess Engineering, 16, 1144–1151.

    Article  CAS  Google Scholar 

  33. Shih, I. L., Van, Y. T., & Chang, Y. N. (2002). Application of statistical experimental methods to optimize production of poly(γ-glutamic acid) by Bacillus licheniformis CCRC 2826. Enzyme and Microbial Technology, 31, 213–220.

    Article  CAS  Google Scholar 

  34. Ogawa, Y., Yamaguchi, F., Yuasa, K., & Tahara, Y. (1997). Efficient production γ-polyglutamic acid by Bacillus subtilis (natto) in jar fermenters. Bioscience, Biotechnology, and Biochemistry, 61, 1684–1687.

    Article  CAS  Google Scholar 

  35. Siriwardhana, N., & Jeon, Y. J. (2004). Antioxidative effect of cactus pear fruit (Opuntia ficus-indica) extract on lipid peroxidation inhibition in oils and emulsion model systems. European Food Research and Technology, 219, 369–376.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the High Value-added Food Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Joo Son.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, NR., Lee, SM., Cho, KS. et al. Improved Production of Poly-γ-Glutamic Acid by Bacillus subtilis D7 Isolated from Doenjang, a Korean Traditional Fermented Food, and Its Antioxidant Activity. Appl Biochem Biotechnol 173, 918–932 (2014). https://doi.org/10.1007/s12010-014-0908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0908-0

Keywords

Navigation