Skip to main content

Advertisement

Log in

Copper Response of Proteus hauseri Based on Proteomic and Genetic Expression and Cell Morphology Analyses

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The copper response of Proteus hauseri ZMd44 was determined using one-dimensional (1D) gel electrophoresis coupled with MALDI-TOF-TOF mass spectrometry for a similarity analysis of proteins isolated from P. hauseri ZMd44 cultured in CuSO4-bearing LB medium. Candidate proteins identified as a copper-transporting P-type ATPase (CTPP), phosphoenolpyruvate carboxykinase (PEPCK), flagellin (Fla), and outer membrane proteins (Omps) were the major copper-associated proteins in P. hauseri. In a comparative analysis of subcellular (i.e., periplasmic, intracellular, and inner membranes) and cellular debris, proteomics analysis revealed a distinct differential expression of proteins in P. hauseri with and without copper ion exposure. These findings were consistent with the transcription level dynamics determined using quantitative real-time PCR. Based on a genetic cluster analysis of copper-associated proteins from P. hauseri, Fla and one of the Omps showed greater diversity in their protein sequences compared to those of other Proteus species. Transmission electron microscopy (TEM) and the observed growth on LB agar plates showed that the swarming motility of cells was significantly suppressed and inhibited upon Cu(II) exposure. Thus, copper stress could have important therapeutic significance due to the loss of swarming motility capacity in P. hauseri, which causes urinary tract infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roberts, S. A., Weichsel, A., Grass, G., Thakali, K., Hazzard, J. T., Tollin, G., Rensing, C., & Montfort, W. R. (2002). Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proceedings of the National Academy of Sciences, 99(5), 2766–2771.

    Article  CAS  Google Scholar 

  2. Elguindi, J., Hao, X., Lin, Y., Alwathnani, H. A., Wei, G., & Rensing, C. (2011). Advantages and challenges of increased antimicrobial copper use and copper mining. Applied Microbiology and Biotechnology, 91(2), 237–249.

    Article  CAS  Google Scholar 

  3. Boal, A. K., & Rosenzweig, A. C. (2009). Structural biology of copper trafficking. Chemical Reviews, 109(10), 4760–4779.

    Article  CAS  Google Scholar 

  4. Magnani, D., & Solioz, M. (2007). How bacteria handle copper (pp. 259–285). Berlag: Molecular microbiology of heavy metals. Springer.

    Google Scholar 

  5. Villafane, A. A., Voskoboynik, Y., Cuebas, M., Ruhl, I., & Bini, E. (2009). Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2. Biochemical and Biophysical Research Communications, 385(1), 67–71.

    Article  CAS  Google Scholar 

  6. Rademacher, C., & Masepohl, B. (2012). Copper-responsive gene regulation in bacteria. Microbiology, 158(Pt 10), 2451–2464.

    Article  CAS  Google Scholar 

  7. Paulino, L. C., de Mello, M. P., & Ottoboni, L. M. (2002). Differential gene expression in response to copper in Acidithiobacillus ferrooxidans analyzed by RNA arbitrarily primed polymerase chain reaction. Electrophoresis, 23(4), 520–527.

    Article  CAS  Google Scholar 

  8. Das, A., Modak, J. M., & Natarajan, K. A. (1998). Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie van Leeuwenhoek, 73(3), 215–222.

    Article  CAS  Google Scholar 

  9. Rensing, C., & Grass, G. (2003). Escherichia coli mechanism of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27(2–3), 197–213.

    Article  CAS  Google Scholar 

  10. Outten, F. W., Huffman, D. L., Hale, J. A., & O’Halloran, T. V. (2001). The independent cue and cus system confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. Journal of Biological Chemistry, 276(33), 30670–30677.

    Article  CAS  Google Scholar 

  11. Franke, S., Grass, G., Rensing, C., & Nies, D. H. (2003). Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Journal of Bacteriology, 185(13), 3804–3812.

    Article  Google Scholar 

  12. Piccini, C. D., & Legnani-Fajardo, C. L. (1998). Identification of iron-regulated outer membrane proteins in uropathogenic Proteus mirabilis and its relationship with heme uptake. FEMS Microbiology Letters, 166(2), 243–248.

    Article  CAS  Google Scholar 

  13. Rensing, C., Mitra, B., & Rosen, B. P. (1998). A Zn(II)-translocating P-type ATPase from Proteus mirabilis. Biochemistry and Cell Biology, 76(5), 787–790.

    Article  CAS  Google Scholar 

  14. Ojo, A. O., van Heerden, E., & Piater, L. A. (2008). Identification and initial characterization of a copper resistant South African mine isolate. African Journal of Microbiology Research, 2(11), 281–287.

    Google Scholar 

  15. Zheng, X. S., Ng, I. S., Ye, C. M., Chen, B. Y., & Lu, Y. H. (2013). Copper ion-stimulated McoA-laccase production and enzyme characterization in Proteus hauseri ZMd44. Journal of Bioscience and Bioengineering, 115(4), 388–393.

    Article  CAS  Google Scholar 

  16. Zhang, M. M., Chen, W. M., Chen, B. Y., Chang, C. T., Hsueh, C. C., Ding, Y. T., Lin, K. L., & Xu, H. Z. (2010). Comparative study on characteristics of azo dye decolorization by indigenous decolorizers. Bioresource Technology, 101(8), 2651–2656.

    Article  CAS  Google Scholar 

  17. Chen, B. Y., Zhang, M. M., Chang, C. T., Ding, Y. T., Lin, K. L., Chiou, C. S., Hsueh, C. C., & Xu, H. Z. (2010). Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri. Bioresource Technology, 101(12), 4737–4741.

    Article  CAS  Google Scholar 

  18. Grass, G., & Rensing, C. (2001). CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 286(5), 902–908.

    Article  CAS  Google Scholar 

  19. Galhaup, C., & Haltrich, D. (2001). Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Applied Microbiology and Biotechnology, 56(1–2), 225–232.

    Article  CAS  Google Scholar 

  20. Ng, I. S., Xu, F., Ye, C., Chen, B. Y., & Lu, Y. (2014). Exploring metal effects and synergistic interactions of ferric stimulation on azo-dye decolorization by new indigenous Acinetobacter guillouiae Ax-9 and Rahnella aquatilis DX2b. Bioprocess and Biosystems Engineering, 37(2), 217–224. doi:10.1007/s00449-013-0988-1.

    Article  CAS  Google Scholar 

  21. Kanamaru, K., Kashiwaqi, S., & Mizuno, T. (1994). A copper-transporting P-type ATPase found in the thylakoid membrane of the cyanobacterium Synechococcus species PCC7942. Molecular Microbiology, 13(2), 369–377.

    Article  CAS  Google Scholar 

  22. Barry, A. N., Shinde, U., & Lutsenko, S. (2010). Structural organization of human Cu-transporting ATPases: learning from building blocks. Journal of Biological Inorganic Chemistry, 15(1), 47–59.

    Article  CAS  Google Scholar 

  23. Delbaer, L. T., Sudom, A. M., Prasad, L., Leduc, Y., & Goldie, H. (2004). Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1697(1–2), 271–278.

    Article  Google Scholar 

  24. Ng, I. S., Zheng, X. S., Chen, B. Y., Chi, X. Q., Lu, Y. H., & Chang, C. S. (2013). Proteomics approach to decipher novel genes and enzymes characterization of a bioelectricity-generating and dye-decolorizing bacterium Proteus hauseri ZMd44. Biotechnology and Bioprocess Engineering, 18(1), 8–17.

    Article  CAS  Google Scholar 

  25. Navarro, C. A., Orellana, L. H., Mauriaca, C., & Jerez, C. A. (2009). Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Applied and Environmental Microbiology, 75(19), 6102–6109.

    Article  CAS  Google Scholar 

  26. Teitzel, G. M., Geddie, A., Susan, K., Kirisits, M. J., Whiteley, M., & Parsek, M. R. (2006). Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. Journal of Bacteriology, 188(20), 7242–7256.

    Article  CAS  Google Scholar 

  27. Jones, B. V., Young, R., Mahenthiralingam, E., & Stickler, D. J. (2004). Ultrastructure of Proteus mirabilis swarmer cell rafts and role of swarming in catheter-associated urinary tract infection. Infection and Immunity, 72(7), 3941–3950.

    Article  CAS  Google Scholar 

  28. Armbruster, C. E., & Mobley, H. L. (2012). Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nature Reviews Microbiology, 10, 743–754.

    Article  CAS  Google Scholar 

  29. Tuson, H. H., Copeland, M. F., Carey, S., Sacotte, R., & Weibel, D. B. (2013). Flagellum density regulates Proteus mirabilis swarmer cell motility in viscous environments. Journal of Bacteriology, 195(2), 368–377.

    Article  CAS  Google Scholar 

  30. Olukanni, O. D., Osuntoki, A. A., Kalyani, D. C., Gbenle, G. O., & Govindwar, S. P. (2010). Decolorization and biodegradation of Reactive Blue 13 by Proteus mirabilis LAG. Journal of Hazardous Materials, 184(1), 290–298.

    Article  CAS  Google Scholar 

  31. Chen, B. Y., Wang, Y. M., & Ng, I. S. (2011). Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri. Bioresource Technology, 102(2), 1159–1165.

    Article  CAS  Google Scholar 

  32. Pearson, M. M., Sebaihia, M., Churcher, C., Quail, M. A., Seshasayee, A. S., Luscombe, N. M., Abdellah, Z., Arrosmith, C., Atkin, B., & Chillingworth, T. (2008). Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. Journal of Bacteriology, 190(11), 4027–4037.

    Article  CAS  Google Scholar 

  33. Nielubowicz, G. R., Smith, S. N., & Mobley, H. L. (2010). Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection. Infection and Immunity, 78(6), 2823–2833.

    Article  CAS  Google Scholar 

  34. Mobley, H. L., Belas, R., Lockatell, V., Chippendale, G., Trifillis, A. L., Johnson, D. E., & Warren, J. W. (1996). Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infection and Immunity, 64(12), 5332–5340.

    CAS  Google Scholar 

  35. Hermes-Lima, M., & Vieyra, A. (1992). Pyrophosphate synthesis from phospho(enol)pyruvate catalyzed by precipitated magnesium phosphate with “enzyme-like” activity. Journal of Molecular Evolution, 35(4), 277–285.

    Article  CAS  Google Scholar 

  36. de Zwart, I. I., Meade, S. J., & Pratt, A. J. (2004). Biomimetic phosphoryl transfer catalysed by iron(II)-mineral precipitates. Geochimica et Cosmochimica Acta, 68(20), 4093–4098.

    Article  Google Scholar 

  37. Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8(9), 634–644.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support by the Fundamental Research Funds for the Central Universities (2011121017), the National Natural Science Foundation of China (21206141), and the Fujian Provincial Department of Science & Technology (2012I0009). The authors also sincerely appreciate the academic connection program between Xiamen University (China) and National I-Lan University (Taiwan) in 2011–2014 for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Son Ng.

Additional information

Xuesong Zheng and Nan Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, IS., Zheng, X., Wang, N. et al. Copper Response of Proteus hauseri Based on Proteomic and Genetic Expression and Cell Morphology Analyses. Appl Biochem Biotechnol 173, 1057–1072 (2014). https://doi.org/10.1007/s12010-014-0892-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0892-4

Keywords

Navigation