Skip to main content
Log in

Enhanced Heterotrophic Denitrification: Effect of Dairy Industry Sludge Acclimatization and Operating Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Heterotrophic denitrification of drinking water was enhanced by selection of an anoxic sludge taken from a dairy industry among the sludges taken from various industries, and the effect of carbon sources was examined. Acclimatization to high nitrate concentration was then carried out in a five-stage process. Considering removals of both nitrate and nitrite, the sludge taken from anoxic unit of Tehran Pegah dairy industry was shown to be the superior microbial culture, with ethanol as carbon source as compared to acetate. To enhance the rate of denitrification, acclimatization to nitrate (at 100, 200, 400, 800, and 1,600 mg N-NO3/L) was carried out in sequencing batch reactors over a 3-month period under anoxic condition, and comparisons were made between the performances of acclimated and non-acclimated sludges at each stage. It was found that acclimatization up to the fourth stage enhanced the specific denitrification rate to a high value of 29.6 mg N-NO3/h/g mixed liquor suspended solids (MLSS), with no significant nitrite accumulation. Additionally, the effect of initial pH (6, 6.5, 7, and 7.5) and carbon-to-nitrogen (C/N) ratio (1, 1.5, 2, and 3) on the performance of this final acclimated sludge was assessed, where initial pH of 7 and C/N ratio of 1.5 resulted in the best performances considering both nitrate and nitrite removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, X., & Wang, J. (2009). Science in China, Series B: Chemistry, 52, 236–240.

    Article  CAS  Google Scholar 

  2. Chu, L., & Wang, J. (2013). Chemosphere, 91, 1310–1316.

    Article  CAS  Google Scholar 

  3. Calderer, M., Gibert, O., Martí, V. V., Rovira, M. M., de Pablo, J., Jordana, S., & Dur, L. (2010). Environmental Technology, 31, 799–814.

    Article  CAS  Google Scholar 

  4. Cheikh, A., Yala, A., Drouiche, N., Abdi, N., Lounici, H., & Mameri, N. (2013). Ecological Engineering, 53, 329–334.

    Article  Google Scholar 

  5. Gilchrist, M., Winyard, P. G., & Benjamin, N. (2010). Nitric Oxide, 22, 104–109.

    Article  CAS  Google Scholar 

  6. Li, H., Zhou, S., Sun, Y., & Lv, J. (2010). Bioresource Technology, 101, 7736–7743.

    Article  CAS  Google Scholar 

  7. Noophan, P., Paopuree, P., Kanlayaras, K., Sirivithayapakorn, S., & Techkarnjanaruk, S. (2009). Environment Asia, 2, 30–35.

    Google Scholar 

  8. Jagessar, R. C., & Alleyne, O. (2011). International Journal of Academic Research, 3, 443–453.

    Google Scholar 

  9. S.r. Warneke, L.A. Schipper, M.G. Matiasek, K.M. Scow, S. Cameron, D.A. Bruesewitz, I.R. (2011). Water Research, 45, 5463–5475.

  10. Ghafari, S., Hasan, M., & Aroua, M. K. (2008). Bioresource Technology, 99, 3965–3974.

    Article  CAS  Google Scholar 

  11. Upadhyaya, G., Jackson, J., Clancy, T. M., Hyun, S. P., Brown, J., Hayes, K. F., & Raskin, L. (2010). Water Research, 44, 4958–4969.

    Article  CAS  Google Scholar 

  12. Liu, H., Jiang, W., Wan, D., & Qu, J. (2009). Journal of Hazardous Materials, 169, 23–28.

    Article  CAS  Google Scholar 

  13. Della Rocca, C., Belgiorno, V., & Meric, S. (2007). Desalination, 204, 46–62.

    Article  CAS  Google Scholar 

  14. Luk, G. K., & Au-Yeung, W. C. (2002). Advances in Environmental Research, 6, 441–453.

    Article  CAS  Google Scholar 

  15. Gomez, M. A., Hontoria, E., & Gonzalez-Lopez, J. (2002). Journal of Hazardous Materials, 90, 267–278.

    Article  CAS  Google Scholar 

  16. Robinson-Lora, M. A., & Brennan, R. A. (2009). Bioresource Technology, 100, 534–541.

    Article  CAS  Google Scholar 

  17. Fuchs, W., Schatzmayr, G., & Braun, R. (1997). Applied Microbiology and Biotechnology, 48, 267–274.

    Article  CAS  Google Scholar 

  18. Adouani, N., Lendormi, T., Limousy, L., & Sire, O. (2010). Resources, Conservation and Recycling, 54, 299–302.

    Article  Google Scholar 

  19. Ovez, B., Ozgen, S., & Yuksel, M. (2006). Process Biochemistry, 41, 1539–1544.

    Article  CAS  Google Scholar 

  20. Upadhyaya, G. (2010). PhD thesis, environmental engineering. US: University of Michigan.

    Google Scholar 

  21. van Rijn, J., Tal, Y., & Schreier, H. J. (2006). Aquacultural Engineering, 34, 364–376.

    Article  Google Scholar 

  22. Schipper, L. A., Robertson, W. D., Gold, A. J., Jaynes, D. B., & Cameron, S. C. (2010). Ecological Engineering, 36, 1532–1543.

    Article  Google Scholar 

  23. Suhr, K. I., Pedersen, P. B., & Arvin, E. (2013). Aquacultural Engineering, 53, 57–64.

    Article  Google Scholar 

  24. Guven, D. (2009). Clean, 37, 565–573.

    CAS  Google Scholar 

  25. Gavazza Dos Santos, S., Amancio Varesche, M. B., Zaiat, M., & Foresti, E. (2004). Environmental Engineering Science, 21, 313–320.

    Article  CAS  Google Scholar 

  26. Glass, C., & Silverstein, J. (1998). Water Research, 32, 831–839.

    Article  CAS  Google Scholar 

  27. Foglar, L., Bolf, N., & Lukic, M. (2010). WSEAS Transactions on Environment and Development, 6, 375–384.

    CAS  Google Scholar 

  28. Wu, J. S., Langley, W. G., & Chao, A. C. (2001). Journal of Environmental Engineering, 127, 689–697.

    Article  CAS  Google Scholar 

  29. Hunt, P. G., Matheny, T. A., Ro, K. S., & Stone, K. C. (2008). Journal of Environmental Science and Health, Part A, 43, 1077–1084.

    Article  CAS  Google Scholar 

  30. Dhamole, P. B., Nair, R. R., D’Souza, S. F., & Lele, S. S. (2007). Bioresource Technology, 98, 247–252.

    Article  CAS  Google Scholar 

  31. Dhamole, P. B., Nair, R. R., D’Souza, S. F., & Lele, S. S. (2008). Applied Biochemistry and Biotechnology, 151, 433–440.

    Article  CAS  Google Scholar 

  32. Glass, C., & Silverstein, J. (1999). Water Research, 33, 223–229.

    Article  CAS  Google Scholar 

  33. Nair, R. R., Dhamole, P. B., & Lele, S. S. (2008). Applied Biochemistry and Biotechnology, 151, 193–200.

    Article  CAS  Google Scholar 

  34. American Public Health Association (APHA), Standard methods for the examination of water and wastewater, 19th ed., Washington.

  35. Strong, P. J., McDonald, B., & Gapes, D. J. (2011). Bioresource Technology, 102, 5533–5540.

    Article  CAS  Google Scholar 

  36. Mekonen, A., Kumar, P., & Kumar, A. (2001). Journal of Environmental Engineering, 127, 273–278.

    Article  CAS  Google Scholar 

  37. Ravindran, V., Tsai, H.–. H., Williams, M. D., & Pirbazari, M. (2009). Journal of Membrane Science, 344, 39–54.

    Article  CAS  Google Scholar 

  38. Shen, Z., Zhou, Y., & Wang, J. (2013). Bioresource Technology, 131, 33–39.

    Article  CAS  Google Scholar 

  39. Gayle, B. P., Boardman, G. D., Sherrard, J. H., & Benoit, R. E. (1989). Journal of Environmental Engineering, 115, 930–943.

    Article  CAS  Google Scholar 

  40. Fernandes, H., Jungles, M. K., Hoffmann, H., Antonio, R. V., & Costa, R. H. R. (2013). Bioresource Technology, 132, 262–268.

    Article  CAS  Google Scholar 

  41. R.R.D. Nair, P.B.D. Dhamole, S.F.D. DSouza. (2010). Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, India.

  42. Lorrain, M. J., Tartakovsky, B., Peisajovich-Gilkstein, A., & Guiot, S. R. (2004). Environmental Technology, 25, 1041–1049.

    Article  CAS  Google Scholar 

  43. Gomez, M. A., Gonzalez-Lopez, J., & Hontoria Garcia, E. (2000). Journal of Hazardous Materials, 80, 69–80.

    Article  CAS  Google Scholar 

  44. Lu, H., & Chandran, K. (2010). Biotechnology and Bioengineering, 106, 390–398.

    CAS  Google Scholar 

  45. Martin, D., Salminen, J. M., Niemi, R. M., Heiskanen, I. M., Valve, M. J., Hellstén, P. P., & Nystén, T. H. (2009). Journal of Hazardous Materials, 163, 1230–1238.

    Article  CAS  Google Scholar 

  46. Liao, R., Shen, K., Li, A.-M., Shi, P., Li, Y., Shi, Q., & Wang, Z. (2013). Bioresource Technology, 134, 190–197.

    Article  CAS  Google Scholar 

  47. Cherchi, C., Onnis-Hayden, A., El-Shawabkeh, I., & Gu, A. Z. (2009). Water Environment Research, 81, 788–799.

    Article  CAS  Google Scholar 

  48. Bilanovic, D., Battistoni, P., Cecchi, F., Pavan, P., & Mata-Alvarez, J. (1999). Water Research, 33, 3311–3320.

    Article  CAS  Google Scholar 

  49. Zhao, Y., Feng, C., Wang, Q., Yang, Y., Zhang, Z., & Sugiura, N. (2011). Journal of Hazardous Materials, 192, 1033–1039.

    Article  CAS  Google Scholar 

  50. Srinandan, C. S., D’souza, G., Srivastava, N., Nayak, B. B., & Nerurkar, A. S. (2012). Bioresource Technology, 117, 292–299.

    Article  CAS  Google Scholar 

  51. Nuhoglu, A., Pekdemir, T., Yildiz, E., Keskinler, B., & Akay, G. (2002). Water Research, 36, 1155–1166.

    Article  CAS  Google Scholar 

  52. Isaka, K., Kimura, Y., Osaka, T., & Tsuneda, S. (2012). Water Research, 46, 4941–4948.

    Article  CAS  Google Scholar 

  53. Mohseni-Bandpi, A., & Elliott, D. J. (1998). Water Science and Technology, 38, 237–243.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fereshteh Naeimpoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari Shahabi, Z., Naeimpoor, F. Enhanced Heterotrophic Denitrification: Effect of Dairy Industry Sludge Acclimatization and Operating Conditions. Appl Biochem Biotechnol 173, 741–752 (2014). https://doi.org/10.1007/s12010-014-0884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0884-4

Keywords

Navigation