Skip to main content
Log in

Production and Characterization of Iturinic Lipopeptides as Antifungal Agents and Biosurfactants Produced by a Marine Pinctada martensii-Derived Bacillus mojavensis B0621A

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus mojavensis B0621A was isolated from a pearl oyster Pinctada martensii collected from South China Sea. While screening for cyclic lipopeptides potentially useful as lead compounds for biological control against soil-bone fungal plant pathogens, three lipopeptides were isolated and purified from the fermentation broth of B. mojavensis B0621A via vacuum flash chromatography coupled with reversed-phase high performance liquid chromatography (RP-HPLC). The structural characterization and identification of these cyclic lipopeptides were performed by tandem mass spectrometry (MS/MS) combined with gas chromatography-mass spectrometry (GC-MS) analysis as well as chemical degradation. These lipopeptides were finally characterized as homologues of mojavensins, which contained identical amino acids back bones of asparagine1, tyrosine2, asparagine3, glutamine4, proline5, asparagine6, and asparagine7 and differed from each other by their saturated β-amino fatty acid chain residues, namely, iso-C14 mojavensin, iso-C16 mojavensin, and anteiso-C17 mojavensin, respectively. All lipopeptide isomers, especially iso-C16 mojavensin and anteiso-C17 mojavensin, displayed moderate antagonism and dose-dependent activity against several formae speciales of Fusarium oxysporum and presented surface tension activities. These properties demonstrated that the lipopeptides produced by B. mojavensis B0621A may be useful as biological control agent to fungal plant pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    Article  CAS  Google Scholar 

  2. Perez-Garcia, A., Romero, D., & de Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22, 187–193.

    Article  CAS  Google Scholar 

  3. Kinsella, K., Schulthess, C. P., Morris, T. F., & Stuart, J. D. (2009). Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere. Soil Biology & Biochemistry, 41, 374–379.

    Article  CAS  Google Scholar 

  4. Nihorimbere, V., Cawoy, H., Seyer, A., Brunelle, A., Thonart, P., & Ongena, M. (2012). Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiology Ecology, 79, 176–191.

    Article  CAS  Google Scholar 

  5. Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62, 4081–4085.

    CAS  Google Scholar 

  6. Toure, Y., Ongena, M., Jacques, P., Guiro, A., & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96, 1151–1160.

    Article  CAS  Google Scholar 

  7. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9, 1084–1090.

    Article  CAS  Google Scholar 

  8. Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews, 34, 1037–1062.

    CAS  Google Scholar 

  9. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., & Perez-Garcia, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20, 430–440.

    Article  CAS  Google Scholar 

  10. Snyder, W. C., & Hansen, H. N. (1940). The species concept in Fusarium. American Journal of Botany, 27, 64–67.

    Article  Google Scholar 

  11. Bacon, C. W., & Hinton, D. M. (1996). Symptomless endophytic colonization of maize by Fusarium moniliforme. Canadian Journal of Botany, 74, 1195–1202.

    Article  Google Scholar 

  12. Riley, R. T., Norred, W. P., & Bacon, C. W. (1993). Fungal toxins in foods—recent concerns. Annual Review of Nutrition, 13, 167–189.

    Article  CAS  Google Scholar 

  13. Marfey, P. (1984). Determination of D-Amino Acids. 2. Use of a bifunctional reagent, 1,5-Difluoro-2,4-Dinitrobenzene. Carlsberg Research Communications, 49, 591–596.

    Article  CAS  Google Scholar 

  14. Raahave, D. (1974). Paper disk-agar diffusion assay of penicillin in the presence of streptomycin. Antimicrobial Agents and Chemotherapy, 6, 603–605.

    Article  CAS  Google Scholar 

  15. Moldovan, Z., Jover, E., & Bayona, J. M. (2002). Gas chromatographic and mass spectrometric methods for the characterisation of long-chain fatty acids—application to wool wax extracts. Analytica Chimica Acta, 465, 359–378.

    Article  CAS  Google Scholar 

  16. Yang, S. Z., Wei, D. Z., & Mu, B. Z. (2007). Determination of the structure of the fatty acid chain in a cyclic lipopeptide using GC-MS. Journal of Biochemical and Biophysical Methods, 70, 519–523.

    Article  CAS  Google Scholar 

  17. Ma, Z., Wang, N., Hu, J., & Wang, S. (2012). Isolation and characterization of a new iturinic lipopeptide, mojavensin a produced by a marine-derived bacterium Bacillus mojavensis B0621A. Journal of Antibiotics, 65, 317–322.

    Article  CAS  Google Scholar 

  18. Magetdana, R., Thimon, L., Peypoux, F., & Ptak, M. (1992). Interfacial properties of the antifungal Iturins on various electrolyte-solutions. Journal of Colloid and Interface Science, 149, 174–183.

    Article  CAS  Google Scholar 

  19. Nasir, M. N., & Besson, F. (2012). Conformational analyses of bacillomycin D, a natural antimicrobial lipopeptide, alone or in interaction with lipid monolayers at the air-water interface. Journal of Colloid and Interface Science, 387, 187–193.

    Article  CAS  Google Scholar 

  20. Volpon, L., Tsan, P., Majer, Z., Vass, E., Hollosi, M., Noguera, V., Lancelin, J. M., & Besson, F. (2007). NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 67, 1374–1381.

    Article  Google Scholar 

  21. Peypoux, F., Guinand, M., Michel, G., Delcambe, L., Das, B. C., & Lederer, E. (1978). Structure of iturine A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry, 17, 3992–3996.

    Article  CAS  Google Scholar 

  22. Eshita, S. M., Roberto, N. H., Beale, J. M., Mamiya, B. M., & Workman, R. F. (1995). Bacillomycin L(C), a new antibiotic of the Iturin group - isolations, structures, and antifungal activities of the Congeners. Journal of Antibiotics, 48, 1240–1247.

    Article  CAS  Google Scholar 

  23. Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., & Cameotra, S. S. (2002). Matrix-assisted laser desorption ionization–time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Applied and Environmental Microbiology, 68, 6210–6219.

    Article  CAS  Google Scholar 

  24. Breci, L. A., Tabb, D. L., Yates, J. R., & Wysocki, V. H. (2003). Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Analytical Chemistry, 75, 1963–1971.

    Article  CAS  Google Scholar 

  25. Vaisar, T., & Urban, J. (1996). Probing the proline effect in CID of protonated peptides. Journal of Mass Spectrometry, 31, 1185–1187.

    Article  CAS  Google Scholar 

  26. Geetha, I., Manonmani, A. M., & Paily, K. P. (2010). Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Applied Microbiology Biotechnology, 86, 1737–1744.

    Article  CAS  Google Scholar 

  27. Geetha, I., Paily, K. P., & Manonmani, A. M. (2012). Mosquito adulticidal activity of a biosurfactant produced by Bacillus subtilis subsp. subtilis. Pest Management Science, 68, 1447–1450.

    Article  CAS  Google Scholar 

  28. Leclere, V., Bechet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M., & Jacques, P. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.

    Article  CAS  Google Scholar 

  29. Zeriouh, H., Romero, D., Garcia-Gutierrez, L., Cazorla, F. M., de Vicente, A., & Perez-Garcia, A. (2011). The Iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of Cucurbits. Molecular Plant-Microbe Interactions, 24, 1540–1552.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science & Technology Pillar Program (No.2011BAE06B04-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangchun Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Z., Hu, J. Production and Characterization of Iturinic Lipopeptides as Antifungal Agents and Biosurfactants Produced by a Marine Pinctada martensii-Derived Bacillus mojavensis B0621A. Appl Biochem Biotechnol 173, 705–715 (2014). https://doi.org/10.1007/s12010-014-0879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0879-1

Keywords

Navigation