Skip to main content
Log in

Molecular and Kinetic Characterization of Two Extracellular Xylanases Isolated from Leucoagaricus gongylophorus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, the xylanolytic profile of Leucoagaricus gongylophorus was studied, and two extracellular enzymes with xylanolytic activity (XyLg1 and XyLg2) were isolated, purified, and characterized. XyLg1 has a molecular mass of about 38 kDa and pI greater than 4.8. For beechwood xylan substrate, XyLg1 showed an optimum temperature of 40 °C, optimum pH between 8.5 and 10.5, and Km = 14.7 ± 7.6 mg mL−1. Kinetic studies of the XyLg1 using polygalacturonic acid as substrate were developed, and the enzyme showed optimum pH 5.5, optimum temperature between 50 and 60 °C, and Km = 2.2 ± 0.5 mg mL−1. XyLg2 has molecular weight of about 24 kDa and pI less than 4.8, and thus is an acid protein. Parameters such as optimum temperature (70 °C) and pH (4.0), as well as the kinetic parameters (Km = 7.4 ± 2.0 mg mL−1) using beechwood xylan as substrate, were determined for XyLg2. This enzyme has no activity for polygalacturonic acid as substrate. XyLg1 and XyLg2 are the first native xylanases isolated and characterized from L. gongylophorus fungi and, due to their biochemistry and kinetic features, they have potential to be used in biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scheller, H. V., & Ulvskov, P. (2010). Annu Rev Plant Biol, 61, 263–289.

    Article  CAS  Google Scholar 

  2. Bissoon, S., Christov, L., & Singh, S. (2002). Process Biochem, 37, 567–572.

    Article  CAS  Google Scholar 

  3. Puls, J. (1997). Macromol Symp, 120, 183–196.

    Article  CAS  Google Scholar 

  4. Sunna, A., & Antranikian, G. (1997). Crit Rev Biotechnol, 17(1), 39–67.

    Article  CAS  Google Scholar 

  5. Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Appl Microbiol Biotechnol, 67, 577–591.

    Article  CAS  Google Scholar 

  6. Twomey, L. N., Pluske, J. R., Rowe, J. B., Choct, M., Brown, W., McConnell, M. F., & Pethick, D. W. (2003). Anim Feed Sci Technol, 108(1–4), 71–82.

    Article  CAS  Google Scholar 

  7. Parajó, J. C., Dominguez, H., & Domínguez, J. M. (1988). Bioresour Technol, 65, 191–211.

    Article  Google Scholar 

  8. Alvira, P., Tomás-Pejó, E., José Negro, M., & Ballesteros, M. (2011). Biotechnol Prog, 27(4), 944–950.

    Article  CAS  Google Scholar 

  9. Bacci, M., Jr., Solomon, S. E., Mueller, U. G., Martins, V. G., Carvalho, A. O. R., Vieira, L. G. E., & Silva-Pinhati, A. C. O. (2009). Mol Phylogenet Evol, 51, 427–437.

    Article  CAS  Google Scholar 

  10. Bass, M., & Cherrett, J. M. (2008). Physiol Entomol, 20(1), 1–6.

    Article  Google Scholar 

  11. De Fine Licht, H. H., Schiøtt, M., Mueller, U. G., & Boomsma, J. J. (2010). Evolution, 64(7), 2055–2069.

    Google Scholar 

  12. Semenova, T. A., Hughes, D. P., Boomsma, J. J., & Schiøtt, M. (2011). BMC Microbiol, 11, 15.

    Article  CAS  Google Scholar 

  13. Bacci, M., Jr., Bueno, O. C., Rodrigues, A., Pagnocca, F. C., Somera, A. F., & Silva, A. (2013). J Insect Physiol, 59(5), 525–531.

    Article  CAS  Google Scholar 

  14. D’Ettorre, P., Mora, P., Dibangou, V., Rouland, C., & Errard, C. (2002). J Comp Physiol B, 172(2), 169–176.

    Article  Google Scholar 

  15. Rønhede, S., Boomsma, J. J., & Rosendahl, S. (2004). Mycol Res, 108(1), 101–106.

    Article  Google Scholar 

  16. Silva, A., Bacci, M., Jr., Pagnocca, F. C., Bueno, O. C., & Hebling, M. J. A. (2006). Curr Microbiol, 53, 68–71.

    Article  CAS  Google Scholar 

  17. Martin, M. M., & Weber, N. A. (1969). Ann Entomol Soc Am, 62, 1386–1387.

    CAS  Google Scholar 

  18. Gomes De Siqueira, C., Bacci, M., Jr., Pagnocca, F. C., Bueno, O. C., & Hebling, M. J. A. (1998). Appl Environ Microbiol, 64(12), 4820–4822.

    Google Scholar 

  19. Schiøtt, M., De Fine Licht, H. H., Lange, L., & Boomsma, J. J. (2008). BMC Microbiol, 28(8), 40.

    Article  Google Scholar 

  20. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Anal Biochem, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Sumner, J. B. (1924). J Biol Chem, 62, 287–290.

    CAS  Google Scholar 

  23. Bailey, M. J., Biely, P., & Poutanen, K. (1992). J Biotechnol, 23, 257–270.

    Article  CAS  Google Scholar 

  24. Biely, P., Markovic, O., & Mislovicova, D. (1985). Anal Biochem, 144, 147–151.

    Article  CAS  Google Scholar 

  25. Paës, G., Berrin, J. G., & Beaugrand, J. (2012). Biotechnol Adv, 30, 564–592.

    Article  Google Scholar 

  26. Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., & Horikoshi, K. (1993). Appl Environ Microbiol, 59(7), 2311–2316.

    CAS  Google Scholar 

  27. Brito-Cunha, C. C., de Campos, I. T., de Faria, F. P., & Bataus, L. A. (2013). Appl Biochem Biotechnol, 170(3), 598–608.

    Article  CAS  Google Scholar 

  28. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Applied Microbiology Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  29. Ahmed, S., Riaz, S., & Jamil, A. (2009). Appl Microbiol Biotechnol, 84, 19–35.

    Article  CAS  Google Scholar 

  30. Kimura, T., Ito, J., Kawano, A., Makino, T., Kondo, H., Karita, S., Sakka, K., & Ohmiya, K. (2000). Biosci Biotechnol Biochem, 64, 1230–1237.

    Article  CAS  Google Scholar 

  31. Knob, A., & Carmona, E. C. (2010). Appl Biochem Biotechnol, 162(2), 429–443.

    Article  CAS  Google Scholar 

  32. Lee, J.-W., Park, J.-Y., Kwon, M., & Choi, I.-G. (2009). J Biosci Bioeng, 107, 33–37.

    Article  CAS  Google Scholar 

  33. Fialho, M. B., & Carmona, E. C. (2002). Folia Microbiol, 49(1), 13–18.

    Article  Google Scholar 

  34. Aylward, F. O., Burnum-Johnson, K. E., Tringe, S. G., Teiling, C., Tremmel, D. M., Moeller, J. A., Scott, J. J., Barry, K. W., Piehowski, P. D., Nicora, C. D., Malfatti, S. A., Monroe, M. E., Purvine, S. O., Goodwin, L. A., Smith, R. D., Weinstock, G. M., Gerardo, N. M., Suen, G., Lipton, M. S., & Currie, C. R. (2013). Appl Environ Microbiol, 79(12), 3770–3778.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant 2011/21955-3 from the Sao Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulce Helena F. Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, A.C., Ferreira, D., de Almeida, F.G. et al. Molecular and Kinetic Characterization of Two Extracellular Xylanases Isolated from Leucoagaricus gongylophorus . Appl Biochem Biotechnol 173, 694–704 (2014). https://doi.org/10.1007/s12010-014-0872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0872-8

Keywords

Navigation