Skip to main content

Advertisement

Log in

Toll-like Receptors Gene Expression in the Gastrointestinal Tract of Salmonella Serovar Pullorum-Infected Broiler Chicken

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Salmonella enterica serovar Pullorum causes substantial mortality in chicks as well as results in persistent infection and vertical transmission in layer birds. An effective innate immune response in the early stages of infection could reduce bacterial colonization and mortality in chicks and persistency of infection in later stages. Toll-like receptors (TLRs), important components of innate immune response, plays a pivotal role in early recognition of pathogen as well as in the initiation of robust and specific adaptive immune response. In the present study, we quantified the expression levels of chicken TLRs (1LA, 1LB, 2A, 2B, 3, 4, 5, 7, 15, and 21) mRNA by quantitative real-time PCR in the gastrointestinal (GI) tissues (duodenum, jejunum, ileum, and cecum) of 3-day-old broiler chicks after 24 h of oral infection with S. enterica serovar Pullorum. We found significant upregulation of TLRs (TLR2, TLR4, TLR21) mRNA expressions in GI tract tissues after S. Pullorum infection. The exceptions were for TLR3 and TLR15 with decrease in the expression levels in the jejunum after infection. TLR4 gene expression was significantly (P < 0.05) upregulated in the duodenum and ileum of infected chicks. Gene expression for some of the TLRs (TLR1LA, ILB, 2B, and TLR5) remained unchanged after infection with S. Pullorum in all the GI tissues studied. Most substantial change in gene expression was found for TLR21, being significantly (P < 0.05) upregulated in all the tissues investigated. The differential expression levels of TLRs shed light on tailored innate immune response induced by S. Pullorum during the early stages of infection in chicks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Wigley, P., Jr, B., Page, A. K. L., Smith, A. L., & Barrow, P. A. (2001). Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect Immun, 69, 7873–7879.

    Article  CAS  Google Scholar 

  2. Chappell, L., Kaiser, P., Barrow, P., Jones, M. A., Johnston, C., & Wigley, P. (2009). The immunobiology of avian systemic salmonellosis. Vet Immunol Immunopathol, 128, 53–59.

    Article  CAS  Google Scholar 

  3. MacKinnon, K. M., He, H., Nerren, J. R., Swaggerty, C. L., Genovese, K. J., & Kogut, M. H. (2009). Expression profile of toll-like receptors within the gastrointestinal tract of 2-day-old Salmonella enteritidis-infected broiler chickens. Vet Microbiol, 137, 313–319.

    Article  CAS  Google Scholar 

  4. Shaughnessy, R. G., Meade, K. G., Cahalane, S., Allan, B., Reiman, C., Callanan, J. J., & O’Farrelly, C. (2009). Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet Immunol Immunopathol, 132, 191–198.

    Article  CAS  Google Scholar 

  5. Henderson, S. C., Bounous, D. I., & Lee, M. D. (1999). Early events in the pathogenesis of avian salmonellosis. Infect Immun, 67, 3580–3586.

    CAS  Google Scholar 

  6. Kaiser, P., Rothwell, L., Galyov, E. E., Barrow, P. A., Burnside, J., & Wigley, P. (2000). Differential cytokine expression in avian cells in response to invasion by Salmonella typhimurium Salmonella enteritidis and Salmonella gallinarum. Microbiology, 146, 3217–3226.

    CAS  Google Scholar 

  7. Janeway, C. A., Jr., & Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immunol, 20, 197–216.

    Article  CAS  Google Scholar 

  8. Werling, D., & Jungi, T. W. (2003). TOLL-like receptors linking innate and adaptive immune response. Vet Immunol Immunopathol, 91, 1–12.

    Article  CAS  Google Scholar 

  9. Temperley, N. D., Berlin, S., Paton, I. R., Griffin, D. K., & Burt, D. W. (2008). Evolution of the chicken Toll-like receptor gene family: a story of gene gain and gene loss. BMC Genomics, 9, 62.

    Article  Google Scholar 

  10. Kannaki, T. R., Reddy, M. R., Shanmugam, M., Verma, P. C., & Sharma, R. P. (2010). Chicken Toll-like receptors and their role in immunity. World’s Poult Sci J, 66, 727–738.

    Article  Google Scholar 

  11. Brownlie, R., & Allan, B. (2011). Avian toll-like receptors. Cell Tissue Res, 343, 121–130.

    Article  CAS  Google Scholar 

  12. Leveque, G., Forgetta, V., Morroll, S., Smith, A. L., Bumstead, N., Barrow, P., Loredo-Osti, J. C., Morgan, K., & Malo, D. (2003). Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infect Immun, 71, 1116–1124.

    Article  CAS  Google Scholar 

  13. Higgs, R., Cormican, P., Cahalane, S., Allan, B., Lloyd, A. T., Meade, K., James, T., Lynn, D. J., Babiuk, L. A., & O’Farrelly, C. (2006). Induction of a novel chicken Toll-like receptor following Salmonella enteric serovar Typhimurium infection. Infect Immun, 74, 1692–1698.

    Article  CAS  Google Scholar 

  14. Nerren, J. R., Swaggerty, C. L., MacKinnon, K. M., Genovese, K. J., He, H., Pevzner, I., & Kogut, M. H. (2009). Differential mRNA expression of the avian-specific toll-like receptor 15 between heterophils from Salmonella-susceptible and resistant chickens. Immunogenetics, 61, 71–77.

    Article  CAS  Google Scholar 

  15. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-rime quantitative PCR and the 2-∆∆Ct method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  16. Shivaprasad, H. L. (2000). Fowl typhoid and pullorum disease. Rev Sci Technol, 19, 405–424.

    CAS  Google Scholar 

  17. Bar-Shira, E., Sklan, D., & Friedman, A. (2003). Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev Comp Immunol, 27, 147–157.

    Article  CAS  Google Scholar 

  18. Nerren, J. R., He, H., Genovese, K., & Kogut, M. H. (2010). Expression of the avian-specific toll-like receptor 15 in chicken heterophils is mediated by gram-negative and gram-positive bacteria, but not TLR agonists. Vet Immunol Immunopathol, 136, 151–156.

    Article  CAS  Google Scholar 

  19. Meade, K. G., Higgs, R., Lloyd, A. T., Giles, S., & O’Farrelly, C. (2009). Differential antimicrobial peptide gene expression patterns during early chicken embryological development. Dev Comp Immunol, 33, 516–524.

    Article  CAS  Google Scholar 

  20. Bar-Shira, E., & Friedman, A. (2006). Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Dev Comp Immunol, 30, 930–941.

    Article  CAS  Google Scholar 

  21. Fukui, A., Inoue, N., Matsumoto, M., Nomura, M., Yamada, K., Matsuda, Y., Toyoshima, K., & Seya, T. (2001). Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. J Biol Chem, 276, 47143–47149.

    Article  CAS  Google Scholar 

  22. Keestra, A. M., de Zoete, M. R., van Aubel, R. A., & van Putten, J. P. (2007). The central leucine-rich repeat region of chicken TLR16 dictates unique ligand specificity and species-specific interaction with TLR2. J Immunol, 178, 7110–7119.

    Article  CAS  Google Scholar 

  23. Higuchi, M., Matsuo, A., Shingai, M., Shida, K., Ishii, A., Funami, K., Suzuki, Y., Oshiumi, H., Matsumoto, M., & Seya, T. (2008). Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev Comp Immunol, 32, 147–155.

    Article  CAS  Google Scholar 

  24. Kogut, M. H., He, H., & Kaiser, P. (2005). Lipopolysaccharide binding protein/CD14/TLR4-dependent recognition of Salmonella LPS induces the functional activation of chicken heterophils and up-regulation of pro-inflammatory cytokine and chemokine gene expression in these cells. Anim Biotechnol, 16, 165–181.

    Article  CAS  Google Scholar 

  25. Li, P., Xia, P., Wen, J., Zheng, M., Chen, J., Zhao, J., Jiang, R., Liu, R., & Zhao, G. (2010). Up-regulation of the MyD88-dependent pathway of TLR signaling in spleen and caecum of young chickens infected with Salmonella serovar Pullorum. Veterianary Microbiol, 143, 346–351.

    Article  CAS  Google Scholar 

  26. Abasht, B., Kaiser, M. G., & Lamont, S. J. (2008). Toll-like receptor gene expression in cecum and spleen of advanced intercross line chicks infected with Salmonella enterica serovar Enteritidis. Vet Immunol Immunopathol, 123, 314–323.

    Article  CAS  Google Scholar 

  27. Keestra, A. M., de Zoete, M. R., van Aubel, R. A., & van Putten, J. P. (2008). Functional characterization of chicken TLR5 reveals species-specific recognition of flagellin. Mol Immunol, 45, 1298–1307.

    Article  CAS  Google Scholar 

  28. Guard-Petter, J. (1997). Induction of flagellation and a novel agar-penetrating flagellar structure in Salmonella enterica grown on solid media: possible consequences for serological identification. FEMS Microbiol Lett, 149, 173–180.

    Article  CAS  Google Scholar 

  29. Iqbal, M., Philbin, V. J., Withanage, G. S., Wigley, P., Beal, R. K., Goodchild, M. J., Barrow, P., McConnell, I., Maskell, D. J., Young, J., Bumstead, N., Boyd, Y., & Smith, A. L. (2005). Identification and functional characterization of chicken toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar Typhimurium. Infect Immun, 73, 2344–2350.

    Article  CAS  Google Scholar 

  30. van Aubel, R. A., Keestra, A. M., Krooshoop, D. J., van Eden, W., & van Putten, J. P. (2007). Ligand-induced differential cross-regulation of Toll-like receptors 2, 4 and 5 in intestinal epithelial cells. Mol Immunol, 44, 3702–3714.

    Article  CAS  Google Scholar 

  31. Brownlie, R., Zhu, J., Allan, B., Mutwiri, G. K., Babiuk, L. A., Potter, A., & Griebel, P. (2009). Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol, 46, 3163–3170.

    Article  CAS  Google Scholar 

  32. Keestra, A. M., de Zoete, M. R., Bouwman, L. I., & van Putten, J. P. (2010). Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J Immunol, 185, 460–467.

    Article  CAS  Google Scholar 

  33. de Zoete, M. R., Keestra, A. M., Roszczenko, P., & van Putten, J. P. (2010). Activation of human and chicken toll-like receptors by Campylobacter spp. Infect Immun, 78, 1229–1238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannaki T. Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasamy, K.T., Verma, P. & Reddy, M.R. Toll-like Receptors Gene Expression in the Gastrointestinal Tract of Salmonella Serovar Pullorum-Infected Broiler Chicken. Appl Biochem Biotechnol 173, 356–364 (2014). https://doi.org/10.1007/s12010-014-0864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0864-8

Keywords

Navigation