Skip to main content
Log in

Biocatalytic Synthesis of Optically Active Hydroxyesters via Lipase-Catalyzed Decarboxylative Aldol Reaction and Kinetic Resolution

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A two-step sequential biocatalytic process for the synthesis of chiral hydroxyesters that combines a lipase-catalyzed decarboxylative aldol reaction followed by kinetic resolution has been developed. The excellent combination of conventional and unconventional functions provides an attractive route for expanding the applications of biocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4

Similar content being viewed by others

References

  1. Kumar, P., & Dwivedi, N. (2013). Proline catalyzed α-Aminoxylation reaction in the synthesis of biologically active compounds. Acc Chem Res, 46, 289–299.

    Article  CAS  Google Scholar 

  2. Krasnov, V. P., Gruzdev, D. A., & Levit, G. L. (2012). Nonenzymatic acylative kinetic resolution of racemic amines and related compounds. Eur J Org Chem, 2012, 1471–1493.

    Article  CAS  Google Scholar 

  3. Wallace, D. J., & Reamer, R. A. (2013). New synthesis of a selective estrogen receptor modulator using an enatioselective phosphine-mediated 2 + 3 cycloaddition. Tetrahedron Lett, 54, 4425–4428.

    Article  CAS  Google Scholar 

  4. Huisman, G. W., & Collier, S. J. (2013). On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol, 17, 284–292.

    Article  CAS  Google Scholar 

  5. Li, S.-x., Lin, K., Pang, H.-Y., Wu, Y.-X., & Xu, J.–. H. (2013). Production, characterization, and application of an organic solvent-tolerant lipase present in active inclusion bodies. Appl Biochem Biotechnol, 169, 612–623.

    Article  CAS  Google Scholar 

  6. Gatti-Lafranconi, P., & Hollfelder, F. (2013). Flexibility and reactivity in promiscuous enzymes. ChemBioChem, 14, 285–292.

    Article  CAS  Google Scholar 

  7. Chen, Y.-L., Li, W., Liu, Y., Guan, Z., & He, Y.–. H. (2013). Trypsin-catalyzed direct asymmetric aldol reaction. J Mol Catal B Enzym, 87, 83–87.

    Article  CAS  Google Scholar 

  8. Zhou, L.-H., Wang, N., Zhang, W., Xie, Z.-B., & Yu, X.-Q. (2013). Catalytical promiscuity of α-amylase: Synthesis of 3-substituted 2H-chromene derivatives via biocatalytic domino oxa-Michael/aldol condensations. J Mol Catal B Enzym, 91, 37–43.

    Article  CAS  Google Scholar 

  9. Muñoz Solano, D., Hoyos, P., Hernáiz, M. J., Alcántara, A. R., & Sánchez-Montero, J. M. (2012). Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs. Bioresour Technol, 115, 196–207.

    Article  Google Scholar 

  10. Kantak, J. B., & Prabhune, A. A. (2012). Characterization of smallest active monomeric lipase from novel Rhizopus strain: Application in transesterification. Appl Biochem Biotechnol, 166, 1769–1780.

    Article  CAS  Google Scholar 

  11. Stavila, E., Alberda van Ekenstein, G. O. R., & Loos, K. (2013). Enzyme-catalyzed synthesis of aliphatic-aromatic aligoamides. Biomacromolecules, 14, 1600–1606.

    Article  CAS  Google Scholar 

  12. Xie, Z.-B., Wang, N., Jiang, G.-F., & Yu, X.-Q. (2013). Biocatalytic asymmetric aldol reaction in buffer solution. Tetrahedron Lett, 54, 945–948.

    Article  CAS  Google Scholar 

  13. Chávez, G., Hatti-Kaul, R., Sheldon, R. A., & Mamo, G. (2013). Baeyer-Villiger oxidation with peracid generated in situ by CaLB-CLEA catalyzed perhydrolysis. J Mol Catal B Enzym, 89, 67–72.

    Article  Google Scholar 

  14. Vongvilai, P., Linder, M., Sakulsombat, M., Humble, M. S., Berglund, P., Brinck, T., & Ramstrom, O. (2011). Racemase activity of B. cepacia Lipase leads to dual-function asymmetric dynamic kinetic resolution of α-aminonitriles. Angew Chem Int Ed, 50, 6592–6595.

    Article  CAS  Google Scholar 

  15. Kourouli, T., Kefalas, P., Ragoussis, N., & Ragoussis, V. (2002). A new protocol for a regioselective aldol condensation as an alternative convenient synthesis of β-Ketols and α, β-unsaturated ketones. J Org Chem, 67, 4615–4618.

    Article  CAS  Google Scholar 

  16. Feng, X.-W., Li, C., Wang, N., Li, K., Zhang, W.-W., Wang, Z., & Yu, X.-Q. (2009). Lipase-catalysed decarboxylative aldol reaction and decarboxylative Knoevenagel reaction. Green Chem, 11, 1933–1936.

    Article  CAS  Google Scholar 

  17. Magdziak, D., Lalic, G., Lee, H. M., Fortner, K. C., Aloise, A. D., & Shair, M. D. (2005). Catalytic enantioselective thioester aldol reactions that are compatible with protic functional groups. J Am Chem Soc, 127, 7284–7285.

    Article  CAS  Google Scholar 

  18. Evitt, A. S., & Bornscheuer, U. T. (2011). Lipase CAL-B does not catalyze a promiscuous decarboxylative aldol addition or Knoevenagel reaction. Green Chem, 13, 1141–1142.

    Article  CAS  Google Scholar 

  19. Kapoor, M., Majumder, A. B., Mukherjee, J., & Gupta, M. N. (2012). Decarboxylative aldol reaction catalysed by lipases and a protease in organic co-solvent mixtures and nearly anhydrous organic solvent media. Biocatal Biotransform, 30, 399–408.

    Article  CAS  Google Scholar 

  20. Chen, X.-Y., Chen, G.-J., Wang, J.-L., Wu, Q., & Lin, X.-F. (2013). Lipase/acetamide-catalyzed carbon-carbon bond formations: a mechanistic view. Adv Synth Catal, 355, 864–868.

    Article  CAS  Google Scholar 

  21. Strohmeier, G. A., Sovic´, T., Steinkellner, G., Hartner, F. S., Andryushkova, A., Purkarthofer, T., Glieder, A., Gruber, K., & Griengl, H. (2009). Investigation of lipase-catalyzed michael-type carbon–carbon bond formations. Tetrahedron, 65, 5663–5668.

    Article  CAS  Google Scholar 

  22. Nair, M. S., & Joly, S. (2000). Lipase catalyzed kinetic resolution of aryl β-hydroxy ketones. Tetrahedron Asymmetry, 11, 2049–2052.

    Article  CAS  Google Scholar 

  23. Edin, M., Backvall, J. E., & Armando, C.´r. (2004). Tandem enantioselective organo- and biocatalysis: a direct entry for the synthesis of enantiomerically pure aldols. Tetrahedron Lett, 45, 7697–7701.

    Article  CAS  Google Scholar 

  24. Xu, F., Wang, J.-X., Liu, B.-K., Wu, Q., & Lin, X.-F. (2011). Enzymatic synthesis of optical pure b-nitroalcohols by combining d-aminoacylase-catalyzed nitroaldol reaction and immobilized lipase PS-catalyzed kinetic resolution. Green Chem, 13, 2359–2361.

    Article  CAS  Google Scholar 

  25. Joly, S., & Nair, M. S. (2003). Studies on the enzymatic kinetic resolution of β-hydroxy ketones. J Mol Catal B Enzym, 22, 151.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Program on Key Basic Research Project of China (973 Program, 2013CB328900) and the National Natural Science Foundation of China (Nos. 21321061, J1310008, and J1103315). We also thank the Sichuan University Analytical and Testing Center for the NMR analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Wang or Xiao-Qi Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2539 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WW., Wang, N., Feng, XW. et al. Biocatalytic Synthesis of Optically Active Hydroxyesters via Lipase-Catalyzed Decarboxylative Aldol Reaction and Kinetic Resolution. Appl Biochem Biotechnol 173, 535–543 (2014). https://doi.org/10.1007/s12010-014-0860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0860-z

Keywords

Navigation