Skip to main content
Log in

Enhanced Lipid Production by Co-cultivation and Co-encapsulation of Oleaginous Yeast Trichosporonoides spathulata with Microalgae in Alginate Gel Beads

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study attempted to enhance biomass and lipid productivity of an oleaginous yeast Trichosporonoides spathulata by co-culturing with microalgae Chlorella spp., optimizing culture conditions, and encapsulating them in alginate gel beads. The co-culture of the yeast with microalgae Chlorella vulgaris var. vulgaris TISTR 8261 most enhanced overall biomass and lipid productivity by 1.6-fold of the yeast pure culture at 48 h and by 1.1-fold at 72 h. After optimization and scale-up in a bioreactor, this co-culture produced the highest biomass of 12.2 g/L with a high lipid content of 47 %. The dissolved oxygen monitoring system in the bioreactor showed that the microalgae worked well as an oxygen supplier to the yeast. This study also showed that the co-encapsulated yeast and microalgae could grow and produce lipid as same as their free cells did. Therefore, it is possible to apply this encapsulation technique for lipid production and simplification of downstream harvesting process. This co-culture system also produced the lipid with high content of saturated fatty acids, indicating its potential use as biodiesel feedstock with high oxidative stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xue, F., Zhang, X., Luo, H., & Tan, T. (2006). Process Biochemistry, 41, 1699–1702.

    Article  CAS  Google Scholar 

  2. Li, Q., & Wang, M. Y. (1997). Science and Technology of Food Industry, 6, 65–69.

    Google Scholar 

  3. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  CAS  Google Scholar 

  4. Cheirsilp, B., Kitcha, S., & Torpee, S. (2012). Annals of Microbiology, 62, 987–993.

    Article  CAS  Google Scholar 

  5. Cheirsilp, B., Suwannarat, W., & Niyomdecha, R. (2011). New Biotechnology, 341, 1–7.

    Google Scholar 

  6. Lam, K. M., & Lee, K. T. (2012). Biochemical Engineering Journal, 191, 263–268.

    CAS  Google Scholar 

  7. Carrilho, E. N. V. M., No’brega, J. A., & Gilbert, T. R. (2003). Talanta, 60, 1131–1140.

    Article  CAS  Google Scholar 

  8. Cao, Y., Liu, Z., Cheng, G., Jing, X., & Xu, H. (2010). Chemical Engineering Journal, 164, 183–195.

    Article  CAS  Google Scholar 

  9. Moreira, S. M., Moreira-Santos, M., Guilhermino, L., & Ribeiro, R. (2006). Enzyme and Microbial Technology, 38, 135–141.

    Article  CAS  Google Scholar 

  10. Garrido, I. M. (2008). Bioresource Technology, 99, 3949–3964.

    Article  Google Scholar 

  11. Nussinovitch, A. (2010). Polymer macro-and micro-gel beads: Fundamentals 27 and applications (pp. 27–52). New York: Springer Science.

    Book  Google Scholar 

  12. Roca, E., Meinander, N., Núñez, M.J., Hahn-Hägerdal, B. and Lema, J.M. (1996). In: Progress in biotechnology—Immobilized cells—Basics and applications (pp. 173–180). The Netherlands: Elsevier B.V.

  13. Winkelhausen, E., Velickova, E., Amartey, S. A., & Kuzmanova, S. (2010). Applied Biochemistry and Biotechnology, 3, 2214–2220.

    Article  Google Scholar 

  14. Zhou, Z., Li, G., & Li, Y. (2010). International Journal of Biological Macromolecules, 3, 21–26.

    Article  Google Scholar 

  15. Lee, H. H., Park, O. J., Park, J. M., & Yang, J. W. (1996). Journal of Chemical Technology and Biotechnology, 67, 255–259.

    Article  CAS  Google Scholar 

  16. Kitcha, S., & Cheirsilp, B. (2013). Bioenergy Research, 6(1), 300–310.

    Article  CAS  Google Scholar 

  17. Tansakul, P., Savaddiraksa, Y., Prasertsan, P., & Tongurai, C. (2005). Thai Journal of Agricultural Science, 38, 71–76.

    Google Scholar 

  18. Folch, J., Lees, M., & Stanley, G. H. S. (1957). Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  19. Kosugi, Y., Takahashi, K., & Lopez, C. (1995). Journal of American Oil Chemistry Society, 72, 1281–1285.

    Article  CAS  Google Scholar 

  20. Xue, F., Miao, J., Zhang, X., & Tan, T. (2010). Applied Biochemistry and Biotechnology, 160, 498–503.

    Article  CAS  Google Scholar 

  21. Richmond, A. (1986). Handbook of microalgal mass culture. Boca Raton Florida: CRC Press, Inc.

    Google Scholar 

  22. Saenge, C., Cheirsilp, B., Suksaroge, T. T., & Bourtoom, T. (2011). Process Biochemistry, 46(1), 210–218.

    Article  CAS  Google Scholar 

  23. Li, X., Xu, H., & Wu, Q. (2007). Biotechnology and Bioengineering, 98, 764–771.

    Article  CAS  Google Scholar 

  24. Li, M., Liu, G. L., Chi, Z., & Chi, Z. M. (2010). Biomass and Bioenergy, 34, 101–107.

    Article  CAS  Google Scholar 

  25. Bellou, S., Moustogianni, A., Makri, A., & Aggelis, G. (2012). Applied Biochemistry and Biotechnology, 166, 146–158.

    Article  CAS  Google Scholar 

  26. Gao, C., Zhai, Y., Ding, Y., & Wu, Q. (2010). Applied Energy, 87, 756–761.

    Article  CAS  Google Scholar 

  27. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Borghi, M. D. (2009). Chemical Engineering and Processing, 48, 1146–1151.

    Article  CAS  Google Scholar 

  28. Petkov, G., & Garcia, G. (2007). Biochemical Systematics and Ecology, 35, 281–285.

    Article  CAS  Google Scholar 

  29. Cai, S. Q., Hu, C. Q., & Du, S. B. (2007). Journal of Bioscience and Bioengineering, 104, 391–397.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financial supported by the Graduate School of Prince of Songkla University and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission. The first author thanks to the Palm Oil Products and Technology Research Center (POPTEC) for supporting her scholarship. Thanks also to Dr. Brian Hodgson for his assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamas Cheirsilp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitcha, S., Cheirsilp, B. Enhanced Lipid Production by Co-cultivation and Co-encapsulation of Oleaginous Yeast Trichosporonoides spathulata with Microalgae in Alginate Gel Beads. Appl Biochem Biotechnol 173, 522–534 (2014). https://doi.org/10.1007/s12010-014-0859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0859-5

Keywords

Navigation