Skip to main content
Log in

Municipal Solid Waste Landfill Leachate Treatment and Electricity Production Using Microbial Fuel Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial fuel cells were designed and operated to treat landfill leachate while simultaneously producing electricity. Two designs were tested in batch cycles using landfill leachate as a substrate without inoculation (908 to 3,200 mg/L chemical oxygen demand (COD)): Circle (934 mL) and large-scale microbial fuel cells (MFC) (18.3 L). A total of seven cycles were completed for the Circle MFC and two cycles for the larger-scale MFC. Maximum power densities of 24 to 31 mW/m2 (653 to 824 mW/m3) were achieved using the Circle MFC, and a maximum voltage of 635 mV was produced using the larger-scale MFC. In the Circle MFC, COD, biological oxygen demand (BOD), total organic carbon (TOC), and ammonia were removed at an average of 16%, 62%, 23%, and 20%, respectively. The larger-scale MFC achieved an average of 74% BOD removal, 27% TOC removal, and 25% ammonia reduction while operating over 52 days. Analysis of the microbial characteristics of the leachate indicates that there might be both supportive and inhibiting bacteria in landfill leachate for operation of an MFC. Issues related to scale-up and heterogeneity of a mixed substrate remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aelterman, P., Versichele, M., Marzorati, M., Boon, N., & Verstraete, W. (2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 99, 8895–8902.

    Article  CAS  Google Scholar 

  2. American Public Health Association (APHA), American Water Works Association, and Water Environment Federation, (1998). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association, 20th Edition.

  3. Barlaz, M. A., Rooker, A. P., Kjeldsen, P., Gabr, M. A., & Borden, R. C. (2002). Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills. Environmental Science and Technology, 36(16), 3457–3464.

    Article  CAS  Google Scholar 

  4. Cheng, S., Liu, H., & Logan, B. E. (2006). Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environmental Science and Technology, 40, 364–369.

    Article  CAS  Google Scholar 

  5. Damiano, L. (2009). Electricity production from the management of municipal solid waste leachate with microbial fuel cells. In Masters thesis. Durham, NH: University of New Hampshire.

    Google Scholar 

  6. Damiano, L., & Jambeck, J. (2009). Leachate treatment and electricity production in microbial fuel cells. Sardinia, Italy: Proceedings of the Sardinia Waste Symposium. 2009.

    Google Scholar 

  7. Ganesh, K., & Jambeck, J. R. (2013). Treatment of landfill leachate using microbial fuel cells: Alternative anodes and semi-continuous operation. Bioresource Technology, 139, 383–387.

    Google Scholar 

  8. Feng, Y., Wang, X., Logan, B. E., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Environmental Biotechnology, 78, 873–880.

    Article  CAS  Google Scholar 

  9. Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnaikova, A., Beveridge, T. J., Chang, I. D., Kim, B. H., Kim, K. S., Culley, D. E., Reed, S. B., Romine, M. F., Saffarinl, D. A., Hill, E. A., Shi, L., Ellas, D. A., Kennedy, D., Pinchuk, G., Watanabe, K., Ishll, S., Lodan, B., Nealson, K. H., & Fredrickson, J. K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11358–11363.

    Article  CAS  Google Scholar 

  10. Greenman, J., Galvez, A., Giusti, L., & Ieropoulos, I. (2009). Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enzyme and Microbial Technology, 44, 112–119.

    Article  CAS  Google Scholar 

  11. Hach, 2013a. Oxygen demand, chemical, dichromate method 8000 (multi-range: 40.0, 150, 1500, 15,000 mg/L), Hach Water Analysis Handbook, http://www.hach.com/asset-get.download.jsa?id=7639983816.

  12. Hach, 2013b. Sulfide, methylene blue method 8131, Hach Water Analysis Handbook, http://www.hach.com/asset-get.download.jsa?id=7639983902.

  13. Huang, L., & Logan, B. E. (2008). Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Environmental Biotechnology, 80, 349–355.

    Article  CAS  Google Scholar 

  14. Jambeck, J. R., Townsend, T. G., & Solo-Gabriele, H. M. (2008). Landfill disposal of CCA-treated wood with construction and demolition (C&D) debris: Arsenic, chromium, and copper concentrations in leachate. Environmental Science and Technology, 42(15), 5740–5745.

    Article  CAS  Google Scholar 

  15. Kim, J. R., Cheng, S., Oh, S. E., & Logan, B. E. (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science and Technology, 41, 1004–1009.

    Article  CAS  Google Scholar 

  16. Kim, J. R., Dec, J., Bruns, M. A., & Logan, B. E. (2008). Removal of odors from swine wastewater by using microbial fuel cells. Applied and Environmental Microbiology, 74(8), 2540–2543.

    Article  CAS  Google Scholar 

  17. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long-term composition of MSW landfill leachate: A review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336.

    Article  CAS  Google Scholar 

  18. Li, Y., Lu, A., Ding, H., Wang, X., Wang, C., Zeng, C., & Yan, Y. (2010). Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate. Electrochemistry Communications, 12(7), 944–947.

    Article  CAS  Google Scholar 

  19. Liu, H., Ramarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science and Technology, 38, 2281–2285.

    Article  CAS  Google Scholar 

  20. Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science and Technology, 39, 5488–5493.

    Article  CAS  Google Scholar 

  21. Liu, H., Cheng, S., Huang, L., & Logan, B. E. (2008). Scale-up of membrane-free single chamber microbial fuel cells. Journal Power Sources, 179, 274–279.

    Article  CAS  Google Scholar 

  22. Logan, B. E., & Regan, J. M. (2006). Electricity-producing bacterial communities in microbial fuel cells. TRENDS Mirobiology, 14(12), 512–518.

    Article  CAS  Google Scholar 

  23. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Reguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  24. Logan, B. E., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science and Technology, 41, 3341–3346.

    Article  CAS  Google Scholar 

  25. Logan, B. E. (2008). Microbial fuel cells. New Jersey: John Wiley and Sons, Inc.

    Google Scholar 

  26. Lovley, D. R. (2006). Bug juice: Harvesting electricity with microorganisms. Nature Reviews, 4, 497–508.

    CAS  Google Scholar 

  27. Lee, Y., Martin, L., Grasel, P., Tawfiq, K., (2013). Power generation and nitrogen removal of landfill leachate using microbial fuel cell technology, Environ. Technol., doi.org/10.1080/09593330.2013.788040.

  28. Min, B., & Logan, B. E. (2004). Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environmental Science and Technology, 38, 5809–5814.

    Article  CAS  Google Scholar 

  29. Min, B., Kim, J. R., Oh, S. E., Regan, J. M., & Logan, B. E. (2005). Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39, 4961–4968.

    Article  CAS  Google Scholar 

  30. Oh, S. E., & Logan, B. E. (2006). Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Biotechnology Production Process Engineering, 70, 162–169.

    CAS  Google Scholar 

  31. Pfaff, J. D. (1993). METHOD 300.0 Determination of inorganic anions by ion chromatography, environmental monitoring systems laboratory. U.S. EPA: Office of Research and Development. http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_300_0.pdf.

    Google Scholar 

  32. Puig, S., Serra, M., Coma, M., Cabré, M., Balaguer, M. D., & Colprim, J. (2011). Microbial fuel cell application in landfill leachate treatment. Journal of Hazardous Materials, 185, 763–767.

    Article  CAS  Google Scholar 

  33. USEPA (United States Environmental Protection Agency) (2011a). Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2010; Washington, DC.

  34. USEPA (United States Environmental Protection Agency), (2011b). Criteria for municipal solid waste landfills; Code of Federal regulations, Title 40, parts 257 and 258.

  35. USEPA (United States Environmental Protection Agency), (2004). METHOD 9060A Total organic carbon, test methods for evaluating solid waste, physical/chemical methods (SW-846), http://www.epa.gov/waste/hazard/testmethods/sw846/online/.

  36. USEPA, 1983. Methods for chemical analysis of water and wastes, EPA-600/4-79-020, revised 3/83, method 365.3.

  37. Virdis, B., Rabaey, K., Rozendal, R. A., Yuan, Z., & Keller, J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 44, 2970–2980.

    Article  CAS  Google Scholar 

  38. You, S. J., Zhao, Q. L., Jiang, J. Q., Zhang, J. N., & Zhao, S. Q. (2006). Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. Journal Environmental Science and Health Part A, 41, 2721–2734.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the donation of Waste Management’s Turnkey Landfill leachate for this work and the Environmental Research and Education Foundation for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenna R. Jambeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damiano, L., Jambeck, J.R. & Ringelberg, D.B. Municipal Solid Waste Landfill Leachate Treatment and Electricity Production Using Microbial Fuel Cells. Appl Biochem Biotechnol 173, 472–485 (2014). https://doi.org/10.1007/s12010-014-0854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0854-x

Keywords

Navigation