Skip to main content
Log in

Biochemical and Kinetic Study of Laccase from Ganoderma cupreum AG-1 in Hydrogels

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, three different types of hydrogels i.e., (poly (−acrylamide)/alginate (P (AAm)/Alg), poly (acrylamide-N-isopropylacrylamide) (P (AAm-NIPA)), and poly (acrylamide-N-isopropylacrylamide)/alginate (P (AAm-NIPA)/Alg)) were synthesized by acrylamide, alginate, and N-isopropylacrylamide for the entrapment of laccase. The hydrogel-entrapped and free laccase showed optimum temperature of 50 °C for the oxidation of ABTS, but the entrapped laccase showed high temperature, pH, and storage stability as compared to the free enzyme. The K m values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 0.13, 0.28, 0.33, and 0.50 mM, respectively. The V max values of free laccase, (P (AAm)/Alg)-L, (P (AAm-NIPA))-L, and (P (AAm-NIPA)/Alg)-L were found to be 22.22 × 102, 5.55 × 102, 5.0 × 102, and 4.54 × 102 mM/min, respectively. The entrapped laccase hydrogels were used for the decolorization of Reactive Violet 1 dye, with 39 to 45 % decolorization efficiency till the 10th cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanefeld, U., Gardossi, L., & Magner, E. (2009). Understanding enzyme immobilization. Royal Society of Chemistry, 38, 453–468.

    Article  CAS  Google Scholar 

  2. Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., et al. (2012). Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresource Technology, 115, 21–26.

    Article  CAS  Google Scholar 

  3. Tang, L., Zhou, Y., Zeng, G., Li, Z., Liu, Y., Zhang, Y., et al. (2013). A tyrosinase biosensor based on ordered mesoporous carbon-Au/L-lysine/Au nanoparticles for simultaneous determination of hydroquinone and catechol. Analyst, 138, 3552–3560.

    Article  CAS  Google Scholar 

  4. Farnandez, F. M., Sanroman, M. A., & Moldes, D. (2012). Recent development and applications of immobilized laccase. Biotechnology Advances. doi:10.1016/J.biotechadv.2012.02.2013.

    Google Scholar 

  5. Duran, N., Rosa, M. A., Annibale, A. D., & Gianfreda, L. (2003). Applications of laccases and tyrosinases (phenoloxidases) immobilization on different supports: a review. Enzyme and Microbial Technology, 31, 907–931.

    Article  Google Scholar 

  6. Shibayama, M., & Tanaka, T. (1993). Phase transition and related phenomenon of polymer gels. Advances in Polymer Science, 109, 1–62.

    Article  CAS  Google Scholar 

  7. Rosiak, J. M., & Yoshii, F. (1999). Hydrogels and their medical applications. Nuclear Instruments and Methods B, 151, 335–339.

    Article  Google Scholar 

  8. Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 11, 59–84.

    Google Scholar 

  9. Kamamth, K., & Park, K. (1993). Biodegradable hydrogels in drug delivery. Advanced Drug Delivery Reviews, 11, 59–84.

    Article  Google Scholar 

  10. Yamak, O., Kalkan, N. A., Akosy, S., Altinok, H., & Hasirci, N. (2009). Semi-interpenetrating polymer networks (semi-IPNs) for entrapment of laccase and their use in acid orange 52 decolorization. Process Biochemistry, 44, 440–445.

    Article  CAS  Google Scholar 

  11. Osada, Y., & Hasebe, M. (1985). Electrically activated mechanochemical devices using polyelectrolyte gels. Chemistry Letters, 9, 1285–1288.

    Article  Google Scholar 

  12. Kishi, R., Ichijo, H., & Hirasa, O. (1993). Thermo-responsive devices using poly (vinylmethyl ether) hydrogels. Journal of Intelligent Material Systems and Structures, 4, 533–537.

    Article  Google Scholar 

  13. Feil, H., Bae, Y. H., & Kim, S. W. (1991). Molecular separation by thermorespective hydrogel membranes. Journal of Membrane Science, 64, 283–294.

    Article  CAS  Google Scholar 

  14. Dong, L. C., & Hoffman, A. S. (1986). Thermally reversible hydrogels. III. Immobilization of enzymes for feedback reaction control. Controlled Release, 4, 223–227.

    Article  CAS  Google Scholar 

  15. Park, T. G., & Hoffman, A. S. (1991). Immobilization of Arthrobacter simplex in thermally reversible hydrogel: effect of gel hydrophobicity on steroid conversion. Biotechnology Progress, 35, 383–390.

    Article  Google Scholar 

  16. Niku, P. M. L., Raaska, L., & Itavaara, M. (1990). Detection of white-rot fungi by a non-toxic strain. Mycological Research, 94, 27–31.

    Article  Google Scholar 

  17. Huang, J., Xiao, H., Li, B., Wang, J., & Jiang, D. (2006). Immobilization of Pycnoporus sanguineus laccase on copper tetra-aminophthalocyanine-Fe3O4 nanoparticle composite. Biotechnology and Applied Biochemistry, 44, 93–100.

    Article  CAS  Google Scholar 

  18. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  19. Zamora, P. P., Pereira, C. M., Elaine, R. L., Sandra, G. M., Maria, A. R., Rosana, C. M., et al. (2003). Decolorization of reactive dyes by immobilized laccase. Applied Catalysis, B: Environmental, 42, 131–144.

    Article  Google Scholar 

  20. Lu, L., Zhao, M., & Wang, Y. (2007). Immobilization of laccase by alginate–chitosan microcapsules and its use in dye decolorization. World Journal of Microbial and Biotechnology, 23, 159–166.

    Article  CAS  Google Scholar 

  21. Lloret, L., Hollmann, F., Eibes, G., Feijoo, G., Moreira, M. T., & Lema, J. M. (2012). Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation, 23, 373–386.

    Article  CAS  Google Scholar 

  22. Kunamneni, A., Ghazi, I., Camarero, S., Ballesteros, A., Plou, F. J., & Alcalde, M. (2008). Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 43, 169–178.

    Article  CAS  Google Scholar 

  23. Nicolucci, C., Rossi, S., Menale, C., Godjevargova, T., Ivanov, Y., Bianco, M., et al. (2010). Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads. Biodegradation. doi:10.1007/s10532-010-9440-2.

    Google Scholar 

  24. Mohidem, N. A., & Mat, H. (2009). The catalytic activity of laccase immobilized in sol–gel silica. Journal of Applied Sciences, 9, 3141–3145.

    Article  CAS  Google Scholar 

  25. Bayramoglu, G., Yilmaz, M., & Arica, M. Y. (2010). Reversible immobilization of laccase to poly (4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: biodegradation of reactive dyes. Bioresource Technology, 101, 6651–6621.

    Article  Google Scholar 

  26. Irshad, M., Bahadur, B. A., Anwar, Z., Yaqoob, M., Ijaz, A., & Iqbal, H. M. N. (2012). Decolorization applicability of sol–gel matrix-immobilized laccase produced from Ganoderma lucidum using agro-industrial waste. Biological Resources, 7, 4249–4261.

    Google Scholar 

  27. Yinghui, D., Qiuling, W., & Shiyu, F. (2002). Laccase stabilization by covalent binding immobilization on activated polyvinyl alcohol carrier. Letters in Applied Microbiology, 35, 451–456.

    Article  Google Scholar 

  28. Cho, N. S., Cho, H. Y., Shin, S. J., Choi, Y. J., Leonowicz, A., & Ohga, S. (2008). Production of fungal laccase and its immobilization and stability. Journal of Faculty of Agriculture, 53, 13–18.

    CAS  Google Scholar 

  29. Leuterek, J., Gianfreda, L., Wasilewska, M., Chi, N. S., Rogalski, J., Jaszek, M., et al. (1998). Activity of free and immobilized extracellular Cerrena unicolor laccase in water miscible organic solvents. Holzforschung, 52, 589–595.

    Article  Google Scholar 

  30. Champagne, P. P., & Ramsay, J. A. (2010). Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresource Technology, 101, 2230–2235.

    Article  CAS  Google Scholar 

  31. Champagne, P. P., & Ramsay, J. A. (2007). Reactive blue 19 decolourization by laccase immobilized on silica beads. Applied Microbial Biotechnology, 77, 819–823.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Department of Biotechnology (DBT sanction no. BT/PR9134/BCE/08/543/2007) and Ministry of Science and Technology, New Delhi, for their financial support. Mr. Mayur Gahlout also wishes to acknowledge SICART, V.V. Nagar, Gujarat, for providing the necessary instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Gupte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gahlout, M., Gupte, S. & Gupte, A. Biochemical and Kinetic Study of Laccase from Ganoderma cupreum AG-1 in Hydrogels. Appl Biochem Biotechnol 173, 215–227 (2014). https://doi.org/10.1007/s12010-014-0835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0835-0

Keywords

Navigation