Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3835–3843 | Cite as

Optimization of Culture Conditions for Enhanced Lysine Production Using Engineered Escherichia coli

  • Hanxiao Ying
  • Xun He
  • Yan Li
  • Kequan ChenEmail author
  • Pingkai Ouyang
Article

Abstract

In this study, culture conditions, including dissolved oxygen (DO) content, presence of osmoprotectants, residual glucose concentration, and ammonium sulfate-feeding strategies, were investigated for decreasing the inhibition effects of acetic acid, ammonium, and osmotic stress on l-lysine fermentation by Escherichia coli. The results revealed that higher DO content and lower residual glucose concentration could decrease acetic acid accumulation, betaine supplementation could enhance osmotic stress tolerance, and variable speed ammonium sulfate-feeding strategy could decrease ammonium inhibition. Thus, with 25 % DO content, 0–5.0 g/L of residual glucose concentration, and 1.5 g/L of betaine supplementation, 134.9 g/L of l-lysine was obtained after 72 h of culture, with l-lysine yield and productivity of 45.4 % and 1.9 g/(L · h), respectively.

Keywords

l-lysine Engineered E. coli Inhibition Optimization Fermentation 

Notes

Acknowledgments

This work was supported by the National Nature Science Foundation of China (grant no. 21106066, 21106068), National Key Technology Support Program (grant no. 2012BAI44G00), “973” program of China (grant no. 2011CBA00807), and Nature Science Foundation of Jiangsu High School (11KJB530003).

References

  1. 1.
    Brautaset, T., & Ellingsen, T. E. (2011). Industrial biotechnology and commodity products. In M. Y. Murray (Ed.), Comprehensive Biotechnology (Vol. 3, pp. 541–554). New York: Elsevier.CrossRefGoogle Scholar
  2. 2.
    Becker, J., Klopprogge, C., & Wittmann, C. (2009). Applied and Environmental Microbiology, 75, 7866–7869.CrossRefGoogle Scholar
  3. 3.
    Eggeling, L., & Sahm, H. (1999). Applied Microbiology and Biotechnology, 52, 146–153.CrossRefGoogle Scholar
  4. 4.
    Wittmann, C., and Becker, J. (2007). Biosynthesis—pathways, regulation and metabolic engineering. In: Volker, F.W. (eds). Microbiology monographs, vol. 5: Amino acid. Springer: New York. pp. 39–70.Google Scholar
  5. 5.
    Lee, G. H., Hur, W., & Flickinger, M. C. (1996). Biotechnology and Bioengineering, 49, 639–653.CrossRefGoogle Scholar
  6. 6.
    Xu, D. Q., Tan, Y. Z., & Huan, X. J. (2009). Journal of Microbiological Methods, 80, 86–92.CrossRefGoogle Scholar
  7. 7.
    Sassi, A. H., Fauvart, L., & Deschamps, A. M. (1998). Biochemical Engineering Journal, 1, 85–90.CrossRefGoogle Scholar
  8. 8.
    Nadeem, S., Ikaram, A., & Yaqoob, N. (2001). International Journal of Agriculture and Biology, 4, 448–450.Google Scholar
  9. 9.
    Mey, M. D., Maeseneire, S. D., & Sortaert, W. (2007). Journal of Industrial Microbiology, 34, 689–700.CrossRefGoogle Scholar
  10. 10.
    Hanning, G., & Makrides, S. C. (1998). Trends in Biotechnology, 16, 54–60.CrossRefGoogle Scholar
  11. 11.
    Khamduang, M., Packdibamrung, K., & Chutmanop, J. (2009). Journal of Industrial Microbiology & Biotechnology, 36, 1267–1274.CrossRefGoogle Scholar
  12. 12.
    Patnaik, R., Zolandz, R. R., & Green, D. A. (2008). Biotechnology and Bioengineering, 99, 741–752.CrossRefGoogle Scholar
  13. 13.
    Zhao, Z. J., Zou, C., & Zhu, Y. X. (2011). Journal of Industrial Microbiology & Biotechnology, 38, 1921–1929.CrossRefGoogle Scholar
  14. 14.
    Imaizumi, A., Takikawa, R., & Koseki, C. (2005). Journal of Biotechnology, 117, 111–118.CrossRefGoogle Scholar
  15. 15.
    Nagai, Y., and Masumitsu, Y. (2008). EP2202299.Google Scholar
  16. 16.
    Mika, J. T. (2012). Molecule diffusion in bacteria and consequences of osmotic stress (pp. 10–14). Groningen: University of Groningen.Google Scholar
  17. 17.
    Thompson, B. G., Kole, M., & Gerson, O. (1985). Biotechnology and Bioengineering, 27, 818–824.CrossRefGoogle Scholar
  18. 18.
    Han, K., Lim, H. C., & Hong, J. (1992). Biotechnology and Bioengineering, 39, 663–671.CrossRefGoogle Scholar
  19. 19.
    Saurina, J., Cassou, S. H., & Alegtet, S. (1999). Biosensors & Bioelectronics, 14, 211–220.CrossRefGoogle Scholar
  20. 20.
    Suarez, D. C., & Kilikian, B. V. (2000). Process Biochemistry, 35, 1051–1055.CrossRefGoogle Scholar
  21. 21.
    Korz, D. J., Rinas, U., & Hellmuth, K. (1995). Journal of Biotechnology, 39, 59–65.CrossRefGoogle Scholar
  22. 22.
    Padan, E., & Krulwich, T. A. (2000). Sodium stress (pp. 117–130). Washington DC: ASM Press.Google Scholar
  23. 23.
    Shiloach, J., Kaufman, J., & Fass, R. (1996). Biotechnology and Bioengineering, 49, 421–428.CrossRefGoogle Scholar
  24. 24.
    Ronsch, H., Kramer, R., & Morbach, S. (2003). Journal of Biotechnology, 104, 87–97.CrossRefGoogle Scholar
  25. 25.
    Kunte, H. J., Crane, R. A., & Culham, D. E. (1999). Journal of Bacteriology, 181, 1537–1543.Google Scholar
  26. 26.
    Mutsumi, T., Yoshinori, N., & Gyuseop, O. (1996). Biotechnology and Bioengineering, 52, 653–660.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hanxiao Ying
    • 1
  • Xun He
    • 1
  • Yan Li
    • 1
  • Kequan Chen
    • 1
    Email author
  • Pingkai Ouyang
    • 1
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering College of Life Science and PharmacyNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations