Skip to main content
Log in

Expression, Purification, and Characterization of Endo-β-N-Acetylglucosaminidase H Using Baculovirus-Mediated Silkworm Protein Expression System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Endo-β-N-acetylglucosaminidase (Endo H) from Streptomyces plicatus hydrolyzes the core di-GlcNAc units of asparagine-linked oligosaccharides and is regarded as an important tool for glycobiology research. In the present study, we established a large-scale system to produce secreted Endo H using a silkworm-baculovirus expression system (silkworm-BES). The recombinant Endo H purified from silkworm hemolymph had activity comparable to that from recombinant Escherichia coli. As well as its well-characterized substrate RNase B, the Endo H from silkworm-BES was able to deglycosylate the high-mannose glycoproteins from silkworm hemolymph. Interestingly, the secretion amount of recombinant Endo H was significantly varied among the different silkworm strains, which could provide valuable information for larger-scale protein productions from silkworm-BES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Helenius, A., & Aebi, M. (2001). Intracellular functions of N-linked glycans. Science, 291, 2364–2369.

    Article  CAS  Google Scholar 

  2. Trombetta, E. S. (2003). The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology, 13, 77R–91R.

    Article  CAS  Google Scholar 

  3. Tretter, V., Altmann, F., Kubelka, V., März, L., & Becker, W. M. (1993). Fucose α1, 3-linked to the core region of glycoprotein N-glycans creates an important epitope for IgE from honeybee venom allergic individuals. International Archives of Allergy and Immunology, 102, 259–266.

    Article  CAS  Google Scholar 

  4. Maley, F., Trimble, R. B., Tarentino, A. L., & Plummer, T. H., Jr. (1989). Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Analytical Biochemistry, 180, 195–204.

    Article  CAS  Google Scholar 

  5. Miyazono, K., Thyberg, J., & Heldin, C. H. (1992). Retention of the transforming growth factor-β1 precursor in the Golgi complex in a latent endoglycosidase H-sensitive form. Journal of Biological Chemistry, 267, 5668–5675.

    CAS  Google Scholar 

  6. Mowla, S. J., Farhadi, H. F., Pareek, S., Atwal, J. K., Morris, S. J., Seidah, N. G., et al. (2001). Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. Journal of Biological Chemistry, 276, 12660–12666.

    Article  CAS  Google Scholar 

  7. Frisch, E., Kaup, M., Egerer, K., Weimann, A., Tauber, R., Berger, M., et al. (2011). Profiling of Endo H-released serum N-glycans using CE-LIF and MALDI-TOF-MS—application to rheumatoid arthritis. Electrophoresis, 32, 3510–3515.

    Article  CAS  Google Scholar 

  8. Frisch, E., Schwedler, C., Kaup, M., Iona Braicu, E., Gröne, J., Lauscher, J. C., et al. (2013). Endo-β-N-acetylglucosaminidase H de-N-glycosylation in a domestic microwave oven: application to biomarker discovery. Analytical Biochemistry, 433, 65–69.

    Article  CAS  Google Scholar 

  9. Tarentino, A. L., & Maley, F. (1974). Purification and properties of an Endo-β-N-acetylglucosaminidase from Streptomyces griseus. Journal of Biological Chemistry, 249, 811–817.

    CAS  Google Scholar 

  10. Robbins, P. W., Trimble, R. B., Wirth, D. F., Hering, C., Maley, F., Maley, G. F., et al. (1984). Primary structure of the Streptomyces enzyme Endo-β-N-acetylglucosaminidase H. Journal of Biological Chemistry, 259, 7577–7583.

    CAS  Google Scholar 

  11. Trimble, R. B., & Maley, F. (1984). Optimizing hydrolysis of N-linked high-mannose oligosaccharides by Endo-β-N-acetylglucosaminidase H. Analytical Biochemistry, 141, 515–522.

    Article  CAS  Google Scholar 

  12. Trumbly, R. J., Robbins, P. W., Belfort, M., Ziegler, F. D., Maley, F., & Trimble, R. B. (1985). Amplified expression of Streptomyces Endo-β-N-acetylglucosaminidase H in Escherichia coli and characterization of the enzyme product. Journal of Biological Chemistry, 260, 5683–5690.

    CAS  Google Scholar 

  13. Kato, T., Kajikawa, M., Maenaka, K., & Park, E. Y. (2010). Silkworm expression system as a platform technology in life science. Applied Microbiology and Biotechnology, 85, 459–470.

    Article  CAS  Google Scholar 

  14. Ono, C., Nakatsukasa, T., Nishijima, Y., Asano, S., Sahara, K., & Bando, H. (2007). Construction of the BmNPV T3 bacmid system and its application to the functional analysis of BmNPV he65. Journal of Insect Biotechnology and Sericology, 76, 161–167.

    CAS  Google Scholar 

  15. Lee, J. M., Kawakami, N., Mon, H., Mitsunobu, H., Iiyama, K., Ninaki, S., et al. (2012). Establishment of a Bombyx mori nucleopolyhedrovirus (BmNPV) hyper-sensitive cell line from the silkworm e21 strain. Biotechnology Letters, 34, 1773–1779.

    Article  Google Scholar 

  16. Soejima, Y., Lee, J. M., Nagata, Y., Mon, H., Iiyama, K., Kitano, H., et al. (2013). Comparison of signal peptides for efficient protein secretion in the baculovirus-silkworm system. Central European Journal of Biology, 8, 1–7.

    CAS  Google Scholar 

  17. Fu, D., Chen, L., & O’Neill, R. A. (1994). A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydrate Research, 261, 173–186.

    Article  CAS  Google Scholar 

  18. Kajiura, Z., & Yamashita, O. (1989). Stimulated synthesis of the female-specific storage protein in male larvae of the silkworm Bombyx mori treated with juvenile hormone analog. Archives of Insect Biochemistry and Physiology, 12, 99–109.

    Article  CAS  Google Scholar 

  19. Kim, S., Hwang, S. K., Dwek, R. A., Rudd, P. M., Ahn, Y. H., Kim, E. H., et al. (2003). Structural determination of the N-glycans of a lepidopteran arylphorin reveals the presence of a monoglucosylated oligosaccharide in the storage protein. Glycobiology, 13, 147–157.

    Article  CAS  Google Scholar 

  20. Kawakami, N., Lee, J. M., Mon, H., Kubo, Y., Banno, Y., Kawaguchi, Y., et al. (2008). Efficient protein expression in Bombyx mori larvae of the strain d17 highly sensitive to B. mori nucleopolyhedrovirus. Molecular Biotechnology, 40, 180–185.

    Article  CAS  Google Scholar 

  21. Mon, H., Lee, J. M., Fukushima, M., Nagata, Y., Fujii, M., Xu, J., et al. (2012). Production and characterization of the celery mismatch endonuclease CEL II using baculovirus/silkworm expression system. Applied Microbiology and Biotechnology, 97, 6813–6822.

    Article  Google Scholar 

  22. Fukushima, M., Iiyama, K., Yamashita, J., Furue, M., Tsuji, G., Imanishi, S., et al. (2013). Production of small antibacterial peptides using silkworm-baculovirus protein expression system. Preparative Biochemistry and Biotechnology, 43, 565–576.

    Article  CAS  Google Scholar 

  23. Harvey, D. J., Merry, A. H., Royle, L., Campbell, M. P., Dwek, R. A., & Rudd, P. M. (2009). Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics, 9, 3796–3801.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The NIAS-Bm-oyanagi2 cell line for propagation of recombinant BmNPVs was kindly provided by Dr. Imanishi (National Institute of Agrobiological Sciences, Japan). We also thank Dr. Chisa Aoki (Kyushu University Graduate School) for providing the Bme21 cell line for the expression of recombinant protein. The MALDI TOF MS was kindly supported and analyzed by Center for Advanced Instrumental and Educational Supports (Faculty of Agriculture, Kyushu University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Kusakabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Construction of the recombinant donor plasmid for generating baculoviruses using the Gateway LR reaction. After the Gateway LR reaction between the pENTRL2130K-EndoH-TEVH8STREP and pDEST8 vector, Endo H ORF was under the control of polyhedrin promoter (Polh) in the recombinant donor plasmid pDESTPolh30K-EndoH-TEVH8STREP and followed by an SV40 polyadenylation signal (SV40). L1, L2, R1, R2, B1, and B2, represent recombination sites for Gateway cloning. Cm chloramphenicol resistance gene, ccdB ccdB gene, 30K6G signal peptide from B. mori, Endo H Endo-β-N-acetylglucosaminidase, His × 8 8-histidine-tag, STREP Strep-tag (JPEG 479 kb)

Supplementary Fig. 2

Struture of N-linked oligosaccharides of RNase B. The filled squares and opened circles represent GlcNAc and mannose, respectively (JPEG 916 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsudome, T., Xu, J., Nagata, Y. et al. Expression, Purification, and Characterization of Endo-β-N-Acetylglucosaminidase H Using Baculovirus-Mediated Silkworm Protein Expression System. Appl Biochem Biotechnol 172, 3978–3988 (2014). https://doi.org/10.1007/s12010-014-0814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0814-5

Keywords

Navigation