Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3701–3720 | Cite as

Recent Advances in the Applications of Ionic Liquids in Protein Stability and Activity: A Review

  • Rajan PatelEmail author
  • Meena Kumari
  • Abbul Bashar Khan
Article

Abstract

Room temperatures ionic liquids are considered as miraculous solvents for biological system. Due to their inimitable properties and large variety of applications, they have been widely used in enzyme catalysis and protein stability and separation. The related information present in the current review is helpful to the researchers working in the field of biotechnology and biochemistry to design or choose an ionic liquid that can serve as a noble and selective solvent for any particular enzymatic reaction, protein preservation and other protein based applications. We have extensively analyzed the methods used for studying the protein–IL interaction which is useful in providing information about structural and conformational dynamics of protein. This can be helpful to develop and understanding about the effect of ionic liquids on stability and activity of proteins. In addition, the affect of physico-chemical properties of ionic liquids, viz. hydrogen bond capacity and hydrophobicity on protein stability are discussed.

Keywords

Ionic liquid Enzymes Protein stability Proteins solubility Self-aggregation 

Notes

Conflict of interests

The authors declare no competing financial interests.

References

  1. 1.
    Klibanov, A. M. (1983). Advances in Applied Microbiology, 29, 1–28.CrossRefGoogle Scholar
  2. 2.
    Illanes, A. (1999). Electronic Journal of Biotechnology, 2, 1–9.Google Scholar
  3. 3.
    Volkin, D. B., & Klibanov, A. M. (1989). Protein function: practical approach. Oxford: IRL Press.Google Scholar
  4. 4.
    Kaushik, J. K., & Bhat, R. (1998). The Journal of Physical Chemistry B, 102, 7058–7066.CrossRefGoogle Scholar
  5. 5.
    Santoro, M. M., Liu, Y., Khan, S. M., Hou, L. X., & Bolen, D. W. (1992). Biochemistry, 31, 5278–5283.CrossRefGoogle Scholar
  6. 6.
    Arakawa, T., Bhat, R., & Timasheff, S. N. (1990). Biochemistry, 29, 1924–1931.CrossRefGoogle Scholar
  7. 7.
    Vrikkis, R. M., Fraser, K. J., Fujita, K., Macfarlane, D. R., & Elliott, G. D. (2009). Journal of Biomechanical Engineering, 131, 074514.CrossRefGoogle Scholar
  8. 8.
    Dabirmanesh, B., Khajeh, K., Ranjbar, B., Ghazi, F., & Heydari, A. (2012). Journal of Molecular Liquids, 170, 66–71.CrossRefGoogle Scholar
  9. 9.
    Dang, D. T., Ha, S. H., Lee, S. M., Chang, W. J., & Koo, Y. M. (2007). Journal of Molecular Catalysis B: Enzymatic, 45, 118–121.CrossRefGoogle Scholar
  10. 10.
    Persson, M., & Bornscheuer, U. T. (2003). Journal of Molecular Catalysis B: Enzymatic, 22, 21–27.CrossRefGoogle Scholar
  11. 11.
    Buchfink, R., Tischer, A., Patil, G., Rudolph, R., & Lange, C. (2010). Journal of Biotechnology, 150, 64–72.CrossRefGoogle Scholar
  12. 12.
    Lozano, P., De Diego, T., Carrie, D., Vaultier, M., & Iborra, J. L. (2001). Biotechnology Letters, 23, 1529–1533.CrossRefGoogle Scholar
  13. 13.
    Gordon, C. M. (2001). Applied Catalysis A: General, 222, 101–117.CrossRefGoogle Scholar
  14. 14.
    Houlton, S. (2004). Chemical Week, 10–11.Google Scholar
  15. 15.
    Seddon, K. R. (1997). Journal of Chemical Technology & Biotechnology, 68, 351–356.CrossRefGoogle Scholar
  16. 16.
    Welton, T. (1999). Chemical Reviews, 99, 2071–2084.CrossRefGoogle Scholar
  17. 17.
    Freemantle, M. (1998). Chemical & Engineering News Archive, 76, 32–37.CrossRefGoogle Scholar
  18. 18.
    Sate, D., Janssen, M. H. A., Stephens, G., Sheldon, R. A., Seddon, K. R., & Lu, J. R. (2007). Green Chemistry, 9, 859–867.CrossRefGoogle Scholar
  19. 19.
    De Diego, T., Lozano, P., Gmouh, S., Vaultier, M., & Iborra, J. L. (2005). Biomacromolecules, 6, 1457–1464.CrossRefGoogle Scholar
  20. 20.
    Baker, S. N., McCleskey, T. M., Pandey, S., & Baker, G. A. (2004). Chemical Communications, 0, 940–941.CrossRefGoogle Scholar
  21. 21.
    Lozano, P., De Diego, T., Gmouh, S., Vaultier, M., & Iborra, J. L. (2005). Biocatalysis and Biotransformation, 23, 169–176.CrossRefGoogle Scholar
  22. 22.
    Zhao, H. (2005). Journal of Molecular Catalysis B: Enzymatic, 37, 16–25.CrossRefGoogle Scholar
  23. 23.
    Wiggins, P. M. (1997). Physica A: Statistical Mechanics and its Applications, 238, 113–128.CrossRefGoogle Scholar
  24. 24.
    Collins, K. D. (2004). Methods, 34, 300–311.CrossRefGoogle Scholar
  25. 25.
    Baldwin, R. L. (1996). Biophysical Journal, 71, 2056–2063.CrossRefGoogle Scholar
  26. 26.
    Jain, N., Kumar, A., Chauhan, S., & Chauhan, S. M. S. (2005). Tetrahedron, 61, 1015–1060.CrossRefGoogle Scholar
  27. 27.
    Dupont, J. (2004). Journal of the Brazilian Chemical Society, 15, 341–350.CrossRefGoogle Scholar
  28. 28.
    Schroder, U., Wadhawan, J. D., Compton, R. G., Marken, F., Suarez, P. A. Z., Consorti, C. S., de Souza, R. F., & Dupont, J. (2000). New Journal of Chemistry, 24, 1009–1015.CrossRefGoogle Scholar
  29. 29.
    MacFarlane, D. R., Pringle, J. M., Johansson, K. M., Forsyth, S. A., & Forsyth, M. (2006). Chemical Communications, 0, 1905–1917.CrossRefGoogle Scholar
  30. 30.
    Rogers, R. D., Seddon, K. R., & Volkov, S. (Eds.). (2002). Kluwer Academic Publisher, Dordrecht, Netherlands. pp. 105–107.Google Scholar
  31. 31.
    Zhao, H. (2010). Journal of Chemical Technology & Biotechnology, 85, 891–907.CrossRefGoogle Scholar
  32. 32.
    Anderson, J. L., Ding, J., Welton, T., & Armstrong, D. W. (2002). Journal of the American Chemical Society, 124, 14247–14254.CrossRefGoogle Scholar
  33. 33.
    Armstrong, D. W., He, L., & Liu, Y. S. (1999). Analytical Chemistry, 71, 3873–3876.CrossRefGoogle Scholar
  34. 34.
    Park, S., & Kazlauskas, R. J. (2003). Current Opinion in Biotechnology, 14, 432–437.CrossRefGoogle Scholar
  35. 35.
    Sheldon, R. A., Lau, R. M., Sorgedrager, M. J., van Rantwijk, F., & Seddon, K. R. (2002). Green Chemistry, 4, 147–151.CrossRefGoogle Scholar
  36. 36.
    Lozano, P., de Diego, T., Guegan, J.-P., Vaultier, M., & Iborra, J. L. (2001). Biotechnology and Bioengineering, 75, 563–569.CrossRefGoogle Scholar
  37. 37.
    Zhao, H., Olubajo, O., Song, Z., Sims, A. L., Person, T. E., Lawal, R. A., & Holley, L. A. (2006). Bioorganic Chemistry, 34, 15–25.CrossRefGoogle Scholar
  38. 38.
    Lue, B.-M., Guo, Z., & Xu, X. (2010). Process Biochemistry, 45, 1375–1382.CrossRefGoogle Scholar
  39. 39.
    Kaar, J. L., Jesionowski, A. M., Berberich, J. A., Moulton, R., & Russell, A. J. (2003). Journal of the American Chemical Society, 125, 4125–4131.CrossRefGoogle Scholar
  40. 40.
    Heller, W. T., O’Neill, H. M., Zhang, Q., & Baker, G. A. (2010). Journal of Physical Chemistry B, 114, 13866–13871.CrossRefGoogle Scholar
  41. 41.
    Turner, M. B., Spear, S. K., Huddleston, J. G., Holbrey, J. D., & Rogers, R. D. (2003). Green Chemistry, 5, 443–447.CrossRefGoogle Scholar
  42. 42.
    Noritomi, H., Minamisawa, K., Kamiya, R., & Kato, S. (2011). Journal of Biomedical Science and Engineering, 4, 94–99.CrossRefGoogle Scholar
  43. 43.
    Lee, S., Ha, S., Lee, S., & Koo, Y. M. (2006). Biotechnology Letters, 28, 1335–1339.CrossRefGoogle Scholar
  44. 44.
    Dabirmanesh, B., Daneshjou, S., Sepahi, A. A., Ranjbar, B., Khavari-Nejad, R. A., Gill, P., Heydari, A., & Khajeh, K. (2011). International Journal of Biological Macromolecules, 48, 93–97.CrossRefGoogle Scholar
  45. 45.
    Constantinescu, D., Herrmann, C., & Weingartner, H. (2010). Physical Chemistry Chemical Physics, 12, 1756–1763.CrossRefGoogle Scholar
  46. 46.
    Madeira Lau, R., Sorgedrager, M. J., Carrea, G., van Rantwijk, F., Secundo, F., & Sheldon, R. A. (2004). Green Chemistry, 6, 483–487.CrossRefGoogle Scholar
  47. 47.
    Hernandez-Fernandez, F. J., Rios, A. P. D. I., Tomas-Alonso, F., Gomez, D., & Víllora, G. (2009). Canadian Journal of Chemical Engineering, 87, 910–914.CrossRefGoogle Scholar
  48. 48.
    Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T., & Peters, D. (2008). Green Chemistry, 10, 696–705.CrossRefGoogle Scholar
  49. 49.
    Toral, A. R., de los Rios, A. P., Hernandez, F. J., Janssen, M. H., Schoevaart, R., van Rantwijk, F., & Sheldon, R. A. (2007). Enzyme and Microbial Technology, 40, 1095–1099.Google Scholar
  50. 50.
    Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Zanders, L., & Campbell, S. M. (2009). Journal of Molecular Catalysis B: Enzymatic, 57, 149–157.CrossRefGoogle Scholar
  51. 51.
    Wolski, P. W., Clark, D. S., & Blanch, H. W. (2011). Green Chemistry, 13, 3107–3110.CrossRefGoogle Scholar
  52. 52.
    Klahn, M., Lim, G. S., & Wu, P. (2011). Physical Chemistry Chemical Physics, 13, 18647–18660.CrossRefGoogle Scholar
  53. 53.
    Tavares, A. P. M., Rodriguez, O., & Macedo, E. A. (2008). Biotechnology and Bioengineering, 101, 201–207.CrossRefGoogle Scholar
  54. 54.
    Irimescu, R., & Kato, K. (2004). Journal of Molecular Catalysis B: Enzymatic, 30, 189–194.CrossRefGoogle Scholar
  55. 55.
    Lee, S., Koo, Y.-M., & Ha, S. (2008). Korean Journal of Chemical Engineering, 25, 1456–1462.CrossRefGoogle Scholar
  56. 56.
    Yang, Z. (2009). Journal of Biotechnology, 144, 12–22.CrossRefGoogle Scholar
  57. 57.
    Yamamoto, E., Yamaguchi, S., & Nagamune, T. (2011). Applied Biochemistry and Biotechnology, 164, 957–967.CrossRefGoogle Scholar
  58. 58.
    Attri, P., Venkatesu, P., & Kumar, A. (2011). Physical Chemistry Chemical Physics, 13, 2788–2796.CrossRefGoogle Scholar
  59. 59.
    Laszlo, J. A., & Compton, D. L. (2001). Biotechnology and Bioengineering, 75, 181–186.CrossRefGoogle Scholar
  60. 60.
    Yang, Z., & Pan, W. (2005). Enzyme and Microbial Technology, 37, 19–28.CrossRefGoogle Scholar
  61. 61.
    Erbeldinger, M., Mesiano, A. J., & Russell, A. J. (2000). Biotechnology Progress, 16, 1129–1131.CrossRefGoogle Scholar
  62. 62.
    Nara, S. J., Harjani, J. R., & Salunkhe, M. M. (2002). Tetrahedron Letters, 43, 2979–2982.CrossRefGoogle Scholar
  63. 63.
    de Gonzalo, G., Lavandera, I., Durchschein, K., Wurm, D., Faber, K., & Kroutil, W. (2007). Tetrahedron: Asymmetry, 18, 2541–2546.CrossRefGoogle Scholar
  64. 64.
    Paljevac, M., Habulin, M., & Knez, Z. (2006). Chemical Industry and Chemical Engineering Quarterly, 12, 181–186.CrossRefGoogle Scholar
  65. 65.
    Shen, Z. L., Zhou, W. J., Liu, Y. T., Ji, S. J., & Loh, T. P. (2008). Green Chemistry, 10, 283–286.CrossRefGoogle Scholar
  66. 66.
    Nakashima, K., Okada, J., Maruyama, T., Kamiya, N., & Goto, M. (2006). Science and Technology of Advanced Materials, 7, 692–698.CrossRefGoogle Scholar
  67. 67.
    Zhang, W. G., Wei, D. Z., Yang, X. P., & Song, Q. X. (2006). Bioprocess and Biosystems Engineering, 29, 379–383.CrossRefGoogle Scholar
  68. 68.
    De Los Rios, A. P., Hernandez-Fernandez, F. J., Martínez, F. A., Rubio, M., & Víllora, G. (2007). Biocatalysis and Biotransformation, 25, 151–156.CrossRefGoogle Scholar
  69. 69.
    Ryu, K., & Dordick, J. S. (1992). Biochemistry, 31, 2588–2598.CrossRefGoogle Scholar
  70. 70.
    Lou, W.-Y., Zong, M.-H., Wu, H., Xu, R., & Wang, J.-F. (2005). Green Chemistry, 7, 500–506.CrossRefGoogle Scholar
  71. 71.
    Eggers, D. K., & Valentine, J. S. (2001). Journal of Molecular Biology, 314, 911–922.CrossRefGoogle Scholar
  72. 72.
    Collins, K. D. (1997). Biophysical Journal, 72, 65–76.CrossRefGoogle Scholar
  73. 73.
    Zhang, Y., Furyk, S., Bergbreiter, D. E., & Cremer, P. S. (2005). Journal of the American Chemical Society, 127, 14505–14510.CrossRefGoogle Scholar
  74. 74.
    Sedlak, E., Stagg, L., & Wittung-Stafshede, P. (2008). Archives of Biochemistry and iophysics, 479, 69–73.CrossRefGoogle Scholar
  75. 75.
    Leberman, R., & Soper, A. K. (1995). Nature, 378, 364–366.Google Scholar
  76. 76.
    Collins, K. D., Neilson, G. W., & Enderby, J. E. (2007). Biophysical Chemistry, 128, 95–104.CrossRefGoogle Scholar
  77. 77.
    Baker, S. N., Zhao, H., Pandey, S., Heller, W. T., Bright, F. V., & Baker, G. A. (2011). Physical Chemistry Chemical Physics, 13, 3642–3644.CrossRefGoogle Scholar
  78. 78.
    Yang, Z., Yue, Y. J., Huang, W. C., Zhuang, X. M., Chen, Z. T., & Xing, M. (2009). Journal of Biochemistry, 145, 355–364.CrossRefGoogle Scholar
  79. 79.
    Jenkins, H. D. B., & Marcus, Y. (1995). Chemical Reviews, 95, 2695–2724.CrossRefGoogle Scholar
  80. 80.
    Collins, K. D., & Washabaugh, M. W. (1985). Quarterly Reviews of Biophysics, 18, 323–422.CrossRefGoogle Scholar
  81. 81.
    Von Hippel, P. H., & Schleich, T. (1969). Accounts of Chemical Research, 2, 257–265.CrossRefGoogle Scholar
  82. 82.
    Hochachka, P. W., & Somero, G. N. (2002). Biochemical adaptation: mechanism and process in physiological evolution. New York: Oxford University Press.Google Scholar
  83. 83.
    Fujita, K., MacFarlane, D. R., Forsyth, M., Yoshizawa-Fujita, M., Murata, K., Nakamura, N., & Ohno, H. (2007). Biomacromolecules, 8, 2080–2086.CrossRefGoogle Scholar
  84. 84.
    Constantinescu, D., Weingartner, H., & Herrmann, C. (2007). Angewandte Chemie International Edition, 46, 8887–8889.CrossRefGoogle Scholar
  85. 85.
    Weingartner, H., Cabrele, C., & Herrmann, C. (2012). Physical Chemistry Chemical Physics, 14, 415–426.CrossRefGoogle Scholar
  86. 86.
    Lai, J. Q., Li, Z., Lu, Y. H., & Yang, Z. (2011). Green Chemistry, 13, 1860–1868.CrossRefGoogle Scholar
  87. 87.
    Rodrigues, J. V., Prosinecki, V., Marrucho, I., Rebelo, L. P. N., & Gomes, C. M. (2011). Physical Chemistry Chemical Physics, 13, 13614–13616.CrossRefGoogle Scholar
  88. 88.
    Yu, X., Zou, F., Li, Y., Lu, L., Huang, X., & Qu, Y. (2013). International Journal of Biological Macromolecules, 56, 62–68.CrossRefGoogle Scholar
  89. 89.
    Grossfield, A., Ren, P., & Ponder, J. W. (2003). Journal of the American Chemical Society, 125, 15671–15682.CrossRefGoogle Scholar
  90. 90.
    Combariza, J. E., Kestner, N. R., & Jortner, J. (1994). Journal of Chemical Physics, 100, 2851–2864.CrossRefGoogle Scholar
  91. 91.
    Kaftzik, N., Wasserscheid, P., & Kragl, U. (2002). Organic Process Research & Development, 6, 553–557.CrossRefGoogle Scholar
  92. 92.
    Lang, M., Kamrat, T., & Nidetzky, B. (2006). Biotechnology and Bioengineering, 95, 1093–1100.CrossRefGoogle Scholar
  93. 93.
    Zhao, H. (2006). Journal of Chemical Technology & Biotechnology, 81, 871–891.Google Scholar
  94. 94.
    Van Rantwijk, F., & Sheldon, R. A. (2007). Chemical Reviews, 107, 2757–2785.CrossRefGoogle Scholar
  95. 95.
    Tariq, M., Carvalho, P. J., Coutinho, J. A. P., Marrucho, I. M., Lopes, J. N. C., & Rebelo, L. P. N. (2011). Fluid Phase Equilibria, 301, 22–32.CrossRefGoogle Scholar
  96. 96.
    Greaves, T. L., Weerawardena, A., Fong, C., Krodkiewska, I., & Drummond, C. J. (2006). Journal of Physical Chemistry B, 110, 22479–22487.CrossRefGoogle Scholar
  97. 97.
    Yan, H., Wu, J., Dai, G., Zhong, A., Chen, H., Yang, J., & Han, D. (2012). Journal of Luminescence, 132, 622–628.CrossRefGoogle Scholar
  98. 98.
    Ajloo, D., Sangian, M., Ghadamgahi, M., Evini, M., & Saboury, A. A. (2013). International Journal of Biological Macromolecules, 55, 47–61.CrossRefGoogle Scholar
  99. 99.
    Ou, G., Yang, J., He, B., & Yuan, Y. (2011). Journal of Molecular Catalysis B: Enzymatic, 68, 66–70.CrossRefGoogle Scholar
  100. 100.
    Lange, C., Patil, G., & Rudolph, R. (2005). Protein Science, 14, 2693–2701.CrossRefGoogle Scholar
  101. 101.
    Attri, P., & Venkatesu, P. (2013). Process Biochemistry, 48, 462–470.CrossRefGoogle Scholar
  102. 102.
    Lou, W. Y., & Zong, M. H. (2006). Chirality, 18, 814–821.CrossRefGoogle Scholar
  103. 103.
    Fujita, K., MacFarlane, D. R., & Forsyth, M. (2005). Chemical Communications, 0, 4804–4806.CrossRefGoogle Scholar
  104. 104.
    Micaelo, N. M., & Soares, C. M. (2008). Journal of Physical Chemistry B, 112, 2566–2572.CrossRefGoogle Scholar
  105. 105.
    Byrne, N., Wang, L. M., Belieres, J. P., & Angell, C. A. (2007). Chemical Communications, 0, 2714–2716.CrossRefGoogle Scholar
  106. 106.
    Laszlo, J. A., & Compton, D. L. (2002). Journal of Molecular Catalysis B: Enzymatic, 18, 109–120.CrossRefGoogle Scholar
  107. 107.
    Dang, L., Fang, W., Li, Y., Qian Wang, Q., Hua-Zhi Xiao, H., & Wang, Z. (2013). Applied Biochemistry and Biotechnology, 169, 290–300.CrossRefGoogle Scholar
  108. 108.
    Garlitz, J. A., Summers, C. A., Flowers, R. A., II, & Borgstahl, G. E. O. (1999). Acta Crystallographica Section D, 55, 2037–2038.CrossRefGoogle Scholar
  109. 109.
    Hekmat, D., Hebel, D., Joswig, S., Schmidt, M., & Weuster-Botz, D. (2007). Biotechnology Letters, 29, 1703–1711.CrossRefGoogle Scholar
  110. 110.
    Pusey, M. L., Paley, M. S., Turner, M. B., & Rogers, R. D. (2007). Crystal Growth & Design, 7, 787–793.CrossRefGoogle Scholar
  111. 111.
    Judge, R. A., Takahashi, S., Longenecker, K. L., Fry, E. H., Abad-Zapatero, C., & Chiu, M. L. (2009). Crystal Growth & Design, 9, 3463–3469.CrossRefGoogle Scholar
  112. 112.
    Wang, Z., Dang, L., Han, Y., Jiang, P., & Wei, H. (2010). Journal of Agricultural and Food Chemistry, 58, 5444–5448.CrossRefGoogle Scholar
  113. 113.
    Coelho, C., Trincao, J., & Joao Romao, M. (2010). Journal of Crystal Growth, 312, 714–719.CrossRefGoogle Scholar
  114. 114.
    Kennedy, D. F., Drummond, C. J., Peat, T. S., & Newman, J. (2011). Crystal Growth & Design, 11, 1777–1785.CrossRefGoogle Scholar
  115. 115.
    Chen, X., Ji, Y., & Wang, J. (2010). Analyst, 135, 2241–2248.CrossRefGoogle Scholar
  116. 116.
    Wang, Q., Baker, G. A., Baker, S. N., & Colon, L. A. (2006). Analyst, 131, 1000–1005.CrossRefGoogle Scholar
  117. 117.
    Vidal, S. T. M., Neiva Correia, M. J., Marques, M. M., Ismael, M. R., & Angelino Reis, M. T. (2005). Separation Science and Technology, 39, 2155–2169.CrossRefGoogle Scholar
  118. 118.
    Fan, J., Fan, Y., Pei, Y., Wu, K., Wang, J., & Fan, M. (2008). Separation and Purification Technology, 61, 324–331.CrossRefGoogle Scholar
  119. 119.
    Abdolmohammad-Zadeh, H., & Sadeghi, G. H. (2009). Analytica Chimica Acta, 649, 211–217.CrossRefGoogle Scholar
  120. 120.
    Manzoori, J. L., Amjadi, M., & Abulhassani, J. (2009). Analytica Chimica Acta, 644, 48–52.CrossRefGoogle Scholar
  121. 121.
    Li, S., Cai, S., Hu, W., Chen, H., & Liu, H. (2009). Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 666–671.CrossRefGoogle Scholar
  122. 122.
    Yao, C., & Anderson, J. (2009). Analytical and Bioanalytical Chemistry, 395, 1491–1502.CrossRefGoogle Scholar
  123. 123.
    Smirnova, S., Torocheshnikova, I., Formanovsky, A., & Pletnev, I. (2004). Analytical and Bioanalytical Chemistry, 378, 1369–1375.CrossRefGoogle Scholar
  124. 124.
    Lo, W. H., Yang, H. Y., & Wei, G. T. (2003). Green Chemistry, 5, 639–642.CrossRefGoogle Scholar
  125. 125.
    Abulhassani, J., Manzoori, J. L., & Amjadi, M. (2010). Journal of Hazardous Materials, 176, 481–486.CrossRefGoogle Scholar
  126. 126.
    Du, Z., Yu, Y. L., & Wang, J. H. (2007). Chemistry - A European Journal, 13, 2130–2137.CrossRefGoogle Scholar
  127. 127.
    Ge, L., Wang, X. T., Tan, S. N., Tsai, H. H., Yong, J. W. H., & Hua, L. (2010). Talanta, 81, 1861–1864.CrossRefGoogle Scholar
  128. 128.
    Matsumoto, M., Ohtani, T., & Kondo, K. (2007). Journal of Membrane Science, 289, 92–96.CrossRefGoogle Scholar
  129. 129.
    Cheng, D. H., Chen, X. W., Shu, Y., & Wang, J. H. (2008). Talanta, 75, 1270–1278.CrossRefGoogle Scholar
  130. 130.
    Alvarez-Guerra, E., & Irabien, A. (2012). Separation and Purification Technology, 98, 432–440.CrossRefGoogle Scholar
  131. 131.
    Dreyer, S., & Kragl, U. (2008). Biotechnology and Bioengineering, 99, 1416–1424.CrossRefGoogle Scholar
  132. 132.
    Deive, F. J., Rodriguez, A., Rebelo, L. P. N., & Marrucho, I. M. (2012). Separation and Purification Technology, 97, 205–210.CrossRefGoogle Scholar
  133. 133.
    Shu, Y., Chen, X.-W., & Wang, J.-H. (2010). Talanta, 81, 637–642.CrossRefGoogle Scholar
  134. 134.
    Shu, Y., Han, L., Wang, X., Chen, X., & Wang, J. (2013). ACS Applied Materials & Interfaces, 5, 12156–12162.CrossRefGoogle Scholar
  135. 135.
    Meng, H., Chen, X. W., & Wang, J. H. (2010). Nanotechnology, 21, 385704.CrossRefGoogle Scholar
  136. 136.
    Meng, H., Chen, X. W., & Wang, J. H. (2011). Journal of Materials Chemistry, 21, 14857–14863.CrossRefGoogle Scholar
  137. 137.
    Han, L., Shu, Y., Wang, X., Chen, X., & Wang, J. (2013). Analytical and Bioanalytical Chemistry, 405, 8799–8806.CrossRefGoogle Scholar
  138. 138.
    Chen, X., Liu, J., & Wang, J. (2010). Analytical Methods, 2, 1222–1226.CrossRefGoogle Scholar
  139. 139.
    Zhang, T., Gai, Q., Qu, F., & Zhang, Y. (2011). Electrophoresis, 32, 2904–2910.Google Scholar
  140. 140.
    Wei, W., & Danielson, N. D. (2011). Biomacromolecules, 12, 290–297.CrossRefGoogle Scholar
  141. 141.
    Chitta, K. R., Van Meter, D. S., & Stalcup, A. M. (2010). Analytical and Bioanalytical Chemistry, 396, 775–781.CrossRefGoogle Scholar
  142. 142.
    Corradini, D., Nicoletti, I., & Bonn, G. K. (2009). Electrophoresis, 30, 1869–1876.CrossRefGoogle Scholar
  143. 143.
    Li, D., Wang, Z., Wang, L., Qu, C., & Zhang, H. (2009). Chromatographia, 70, 825–830.CrossRefGoogle Scholar
  144. 144.
    Wu, X., Wei, W., Su, Q., Xu, L., & Chen, G. (2008). Electrophoresis, 29, 2356–2362.CrossRefGoogle Scholar
  145. 145.
    El Rassi, Z. (2010). Electrophoresis, 31, 174–191.CrossRefGoogle Scholar
  146. 146.
    Kasicka, V. (2010). Electrophoresis, 31, 122–146.CrossRefGoogle Scholar
  147. 147.
    Wasserscheid, P., & Keim, W. (2000). Angewandte Chemie International Edition, 39, 3772–3789.CrossRefGoogle Scholar
  148. 148.
    Larsen, A. S., Holbrey, J. D., Tham, F. S., & Reed, C. A. (2000). Journal of the American Chemical Society, 122, 7264–7272.CrossRefGoogle Scholar
  149. 149.
    Van Rantwijk, F., Madeira Lau, R., & Sheldon, R. A. (2003). Trends in Biotechnology, 21, 131–138.CrossRefGoogle Scholar
  150. 150.
    Wu, X., Zhao, B., Wu, P., Zhang, H., & Cai, C. (2009). Journal of Physical Chemistry B, 113, 13365–13373.CrossRefGoogle Scholar
  151. 151.
    Zhao, H., Jackson, L., Song, Z., & Olubajo, O. (2006). Tetrahedron: Asymmetry, 17, 1549–1553.CrossRefGoogle Scholar
  152. 152.
    Hong, E., Yoo, I. K. and Ryu, R. K. (2008). Proc. world congress on engineering and computer science, San Francisco, USA.Google Scholar
  153. 153.
    Moniruzzaman, M., Kamiya, N., & Goto, M. (2008). Langmuir, 25, 977–982.CrossRefGoogle Scholar
  154. 154.
    De Diego, T., Lozano, P., Gmouh, S., Vaultier, M., & Iborra, J. L. (2004). Biotechnology and Bioengineering, 88, 916–924.CrossRefGoogle Scholar
  155. 155.
    Ulbert, O., Belafi-Bako, K., Tonova, K., & Gubicza, L. (2005). Biocatalysis and Biotransformation, 23, 177–183.CrossRefGoogle Scholar
  156. 156.
    Zhang, J., Lei, J., Liu, Y., Zhao, J., & Ju, H. (2009). Biosensors and Bioelectronics, 24, 1858–1863.CrossRefGoogle Scholar
  157. 157.
    Karbalaei-Heidari, R. H., Shahbazi, M., & Absalan, G. (2013). Applied Biochemistry and Biotechnology, 170, 573–586.CrossRefGoogle Scholar
  158. 158.
    Schofer, S. H., Kaftzik, N., Wasserscheid, P., Kragl, U. (2001). Chemical Communications, 5, 425–426.Google Scholar
  159. 159.
    Madeira Lau, R., Van Rantwijk, F., Seddon, K. R., & Sheldon, R. A. (2000). Organic Letters, 2, 4189–4191.CrossRefGoogle Scholar
  160. 160.
    Kim, K. W., Song, B., Choi, M. Y., & Kim, M. J. (2001). Organic Letters, 3, 1507–1509.CrossRefGoogle Scholar
  161. 161.
    Husum, T. L., Jorgensen, C. T., Christensen, M. W., & Kirk, O. (2001). Biocatalysis and Biotransformation, 19, 331–338.CrossRefGoogle Scholar
  162. 162.
    Park, S., & Kazlauskas, R. J. (2001). Journal of Organic Chemistry, 66, 8395–8840.CrossRefGoogle Scholar
  163. 163.
    Yuan, Y., Bai, S., & Sun, Y. (2006). Food Chemistry, 97, 324–330.CrossRefGoogle Scholar
  164. 164.
    Wang, J., Sun, G. X., Yu, L., Wu, F. A., & Guo, X. J. (2013). Bioresource Technology, 128, 156–163.CrossRefGoogle Scholar
  165. 165.
    Chen, W. J., Lou, W. Y., Yu, C. Y., Wu, H., Zong, M. H., & Smith, T. J. (2012). Journal of Biotechnology, 162, 183–190.CrossRefGoogle Scholar
  166. 166.
    Attri, P., & Venkatesu, P. (2012). Journal of Chemical Thermodynamics, 52, 78–88.CrossRefGoogle Scholar
  167. 167.
    Shu, Y., Liu, M., Chen, S., Chen, X., & Wang, J. (2011). Journal of Physical Chemistry B, 115, 12306–12314.CrossRefGoogle Scholar
  168. 168.
    Mester, P., Wagner, M., & Rossmanith, P. (2010). Analytical and Bioanalytical Chemistry, 397, 1763–1766.CrossRefGoogle Scholar
  169. 169.
    Geng, F., Zheng, L., Liu, J., Yu, L., & Tung, C. (2009). Colloid and Polymer Science, 287, 1253–1259.CrossRefGoogle Scholar
  170. 170.
    Geng, F., Zheng, L., Yu, L., Li, G., & Tung, C. (2010). Process Biochemistry, 45, 306–311.CrossRefGoogle Scholar
  171. 171.
    Debnath, S., Das, D., Dutta, S., & Das, P. K. (2010). Langmuir, 26, 4080–4086.CrossRefGoogle Scholar
  172. 172.
    Akdogan, Y., Junk, M. J. N., & Hinderberger, D. (2011). Biomacromolecules, 12, 1072–1079.CrossRefGoogle Scholar
  173. 173.
    Baker, G. A., & Heller, W. T. (2009). Chemical Engineering Journal, 147, 6–12.CrossRefGoogle Scholar
  174. 174.
    Pandey, S. (2006). Analytica Chimica Acta, 556, 38–45.CrossRefGoogle Scholar
  175. 175.
    Summers, C. A., & Flowers, R. A. (2000). Protein Science, 9, 2001–2008.CrossRefGoogle Scholar
  176. 176.
    Mangialardo, S., Gontrani, L., Leonelli, F., Caminiti, R., & Postorino, P. (2012). RSC Advances, 2, 12329–12336.CrossRefGoogle Scholar
  177. 177.
    Turner M.B., Holbrey J.D., Spear S.K., Pusey M.L., Rogers R.D. (2005). Effect of oxygen containing functional groups on protein stability in ionic liquid solutions. Ionic Liquids IIIB:Fundamentals, Progress, Challenges and Opportunities -Transformations and Processes, 902, 233–243.Google Scholar
  178. 178.
    Machado, M., & Saraiva, J. (2005). Biotechnology Letters, 27, 1233–1239.CrossRefGoogle Scholar
  179. 179.
    Pavlidis, I. V., Gournis, D., Papadopoulos, G. K., & Stamatis, H. (2009). Journal of Molecular Catalysis B: Enzymatic, 60, 50–56.CrossRefGoogle Scholar
  180. 180.
    Lee, J. K., & Kim, M. J. (2002). Journal of Organic Chemistry, 67, 6845–6847.CrossRefGoogle Scholar
  181. 181.
    Gelamo, E. L., & Tabak, M. (2000). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56, 2255–2271.CrossRefGoogle Scholar
  182. 182.
    Sandoval, M., Cortes, A., Civera, C., Trevino, J., Ferreras, E., Vaultier, M., Berenguer, J., Lozano, P., & Hernaiz, M. J. (2012). RSC Advances, 2, 6306–6314.CrossRefGoogle Scholar
  183. 183.
    Byler, D. M., & Susi, H. (1986). Biopolymers, 25, 469–487.CrossRefGoogle Scholar
  184. 184.
    Pelton, J. T., & McLean, L. R. (2000). Analytical Biochemistry, 277, 167–176.CrossRefGoogle Scholar
  185. 185.
    Surewicz, W. K., & Mantsch, H. H. (1988). Biochimica et Biophysica Acta, 952, 115–130.CrossRefGoogle Scholar
  186. 186.
    Maiti, N. C., Apetri, M. M., Zagorski, M. G., Carey, P. R., & Anderson, V. E. (2004). Journal of the American Chemical Society, 126, 2399–2408.CrossRefGoogle Scholar
  187. 187.
    Van Wart, H. E., Lewis, A., Scheraga, H. A., & Saeva, F. D. (1973). Proceedings of the National Academy of Sciences, 70, 2619–2623.CrossRefGoogle Scholar
  188. 188.
    Siamwiza, M. N., Lord, R. C., Chen, M. C., Takamatsu, T., Harada, I., Matsuura, H., & Shimanouchi, T. (1975). Biochemistry, 14, 4870–4876.CrossRefGoogle Scholar
  189. 189.
    Mann, J. P., McCluskey, A., & Atkin, R. (2009). Green Chemistry, 11, 785–792.CrossRefGoogle Scholar
  190. 190.
    Weaver, K. D., Vrikkis, R. M., Van Vorst, M. P., Trullinger, J., Vijayaraghavan, R., Foureau, D. M., McKillop, I. H., MacFarlane, D. R., Krueger, J. K., & Elliott, G. D. (2012). Physical Chemistry Chemical Physics, 14, 790–801.CrossRefGoogle Scholar
  191. 191.
    Fan, Y., Yan, J., Zhang, S., Li, J., Chen, D., Duan, P. (2012). Applied Biochemistry and Biotechnology, 168, 592–603.Google Scholar
  192. 192.
    Bowman, W. A., Rubinstein, M., & Tan, J. S. (1997). Macromolecules, 30, 3262–3270.CrossRefGoogle Scholar
  193. 193.
    Singh, T., Boral, S., Bohidar, H. B., & Kumar, A. (2010). Journal of Physical Chemistry B, 114, 8441–8448.CrossRefGoogle Scholar
  194. 194.
    Cooper, A. (1999). Current Opinion in Chemical Biology, 3, 557–563.CrossRefGoogle Scholar
  195. 195.
    Nielsen, A. D., Arleth, L., & Westh, P. (2005). Biochimica et Biophysica Acta (BBA) – Proteins and. Proteomics, 1752, 124–132.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Centre for Interdisciplinary Research in Basic SciencesJamia Millia Islamia (Central University)New DelhiIndia

Personalised recommendations