Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3748–3760 | Cite as

Utilization of Makgeolli Sludge Filtrate (MSF) as Low-Cost Substrate for Bacterial Cellulose Production by Gluconacetobacter xylinus

  • Jo Yi Hyun
  • Biswanath Mahanty
  • Chang Gyun KimEmail author
Article

Abstract

Search for efficient low-cost substrate/additives are gaining significant impetus in bacterial cellulose (BC) production. Makgeolli sludge (a traditional Korean wine distillery waste) is enriched with organic acid, alcohol, and sugar. Using makgeolli sludge filtrate (MSF) and Hestrin–Schramm (HS) medium (g/l of distilled water: glucose, 10.0; peptone, 5.0; yeast extract, 5.0; disodium phosphate, 2.7; citric acid, 1.15; pH 5.0), two different media—namely the modified HS media (ingredients of HS media except glucose dissolved in MSF) and mixed modified HS media (equal volume mixture of original and modified HS media)—were formulated. BC production with Gluconacetobacter xylinus was studied using the two above referred medium. Keeping HS medium as reference, effect of initial pH, glucose, ethanol, and organic acid concentration on BC production was also studied. It suggests that increasing initial glucose (up to 25 g/l) though improves BC production but results in poor BC yield above 15 g/l of glucose. However, addition of alcohol (up to 1%v/v) or citric acid (up to 20 mM) escalate productivity up to four and two times, respectively. In both modified HS media and mixed modified HS medium, BC production was four to five times higher than that of original HS medium. Even MSF alone surpassed HS medium in BC production. Scanning electron microscopy showed that BC microfibrils from MSF based media were several micrometers long and about 25–60 nm widths. X-ray diffraction patterns suggested the produced BC were of cellulose I polymorph.

Keywords

Bacterial cellulose G. xylinus Makgeolli sludge XRD analysis 

Notes

Acknowledgments

This study was financially supported by KRF on enhancement of CO2 biomineralization employing alkaline metal releaser along with partial contribution of INHA University Research Grant.

References

  1. 1.
    Brown, R. M. (2004). Cellulose structure and biosynthesis: What is in store for the 21st century? Journal of Polymer Science Part A: Polymer Chemistry, 42(3), 487–495.CrossRefGoogle Scholar
  2. 2.
    Bielecki, S., Krystynowicz, A., Turkiewicz, M., & Kalinowska, H. (2005). Bacterial cellulose. In A. Steinbüchel (Ed.), Biopolymers online. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.Google Scholar
  3. 3.
    Nakagaito, A. N., Iwamoto, S., & Yano, H. (2004). Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Applied Physics A, 80(1), 93–97.CrossRefGoogle Scholar
  4. 4.
    Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Bacterial cellulose—A masterpiece of nature’s arts. Journal of Materials Science, 35(2), 261–270.CrossRefGoogle Scholar
  5. 5.
    Bielecki, S., Krystynowicz, A., Turkiewicz, M., & Kalinowska, H. (2004). Bacterial cellulose. In E. Vandamme, S. De Baets, & A. Steinbüchel (Eds.), Polysaccharides I: Polysaccharides from Prokaryotes (pp. 37–46). WILEY-VCH.Google Scholar
  6. 6.
    Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D. L., Brittberg, M., et al. (2005). Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 26(4), 419–431.CrossRefGoogle Scholar
  7. 7.
    Klemm, D., Schumann, D., Kramer, F., Hessler, N., Hornung, M., Schmauder, H. P., & Marsch, S. (2006). Nanocelluloses as innovative polymers in research and application. In Polysaccharides II (Vol. 205, pp. 49–96). Springer-Verlag Berlin.Google Scholar
  8. 8.
    Wan, W. K., Hutter, J. L., Milton, L., & Guhados, G. (2006). Bacterial cellulose and its nanocomposites for biomedical applications. In K. Oksman & M. Sain (Eds.), Cellulose nanocomposites (Vol. 938, pp. 221–241). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  9. 9.
    Czaja, W., Krystynowicz, A., Bielecki, S., & Brown, R. M. (2006). Microbial cellulose—The natural power to heal wounds. Biomaterials, 27(2), 145–151.CrossRefGoogle Scholar
  10. 10.
    Czaja, W. K., Young, D. J., Kawecki, M., & Brown, R. M. (2007). The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 8(1), 1–12.CrossRefGoogle Scholar
  11. 11.
    Petersen, N., & Gatenholm, P. (2011). Bacterial cellulose-based materials and medical devices: Current state and perspectives. Applied Microbiology and Biotechnology, 91(5), 1277–1286.CrossRefGoogle Scholar
  12. 12.
    Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539–545.CrossRefGoogle Scholar
  13. 13.
    Shoda, M., & Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10(1), 1–8.CrossRefGoogle Scholar
  14. 14.
    Hazlewood, G. P., Laurie, J. I., Ferreira, L. M. A., & Gilbert, H. J. (1992). Pseudomonas fluorescens subsp. cellulosa: An alternative model for bacterial cellulase. Journal of Applied Bacteriology, 72(3), 244–251.CrossRefGoogle Scholar
  15. 15.
    Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W., & Romling, U. (2001). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular Microbiology, 39(6), 1452–1463.CrossRefGoogle Scholar
  16. 16.
    Trovatti, E., Serafim, L. S., Freire, C. S. R., Silvestre, A. J. D., & Neto, C. P. (2011). Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory. Carbohydrate Polymers, 86(3), 1417–1420.CrossRefGoogle Scholar
  17. 17.
    Römling, U. (2002). Molecular biology of cellulose production in bacteria. Research in Microbiology, 153(4), 205–212.CrossRefGoogle Scholar
  18. 18.
    Vandamme, E. J., De Baets, S., Vanbaelen, A., Joris, K., & De Wulf, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59(1), 93–99.CrossRefGoogle Scholar
  19. 19.
    Mahadevaswamy, U. R., Rastogi, N. K., & Appaiah, K. A. A. (2011). Statistical optimization of medium composition for bacterial cellulose production by gluconacetobacter hansenii UAC09 using coffee cherry husk extract—An agro-industry waste. Journal of Microbiology and Biotechnology, 21(7), 739–745.CrossRefGoogle Scholar
  20. 20.
    Keshk, S., Razek, T., & Sameshima, K. (2006). Bacterial cellulose production from beet molasses. African Journal of Biotechnology, 5(17).Google Scholar
  21. 21.
    Hong, F., & Qiu, K. (2008). An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers, 72(3), 545–549.CrossRefGoogle Scholar
  22. 22.
    Kongruang, S. (2008). Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Applied Biochemistry and Biotechnology, 148(1–3), 245–256.CrossRefGoogle Scholar
  23. 23.
    Hong, F., Guo, X., Zhang, S., Han, S., Yang, G., & Jönsson, L. J. (2012). Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology, 104, 503–508.CrossRefGoogle Scholar
  24. 24.
    Cavka, A., Guo, X., Tang, S.-J., Winestrand, S., Jönsson, L. J., & Hong, F. (2013). Production of bacterial cellulose and enzyme from waste fiber sludge. Biotechnology for Biofuels, 6(1), 25.CrossRefGoogle Scholar
  25. 25.
    Son, H.-J., Kim, H.-S. H.-G., Kim, K.-K., Kim, Y.-G., & Lee, S.-J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresource Technology, 86(3), 215–219.CrossRefGoogle Scholar
  26. 26.
    Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76(2), 333–335.CrossRefGoogle Scholar
  27. 27.
    Embuscado, M. E., Marks, J. S., & BeMiller, J. N. (1994). Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloids, 8(5), 407–418.CrossRefGoogle Scholar
  28. 28.
    Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology, 29(4), 189–195.CrossRefGoogle Scholar
  29. 29.
    Kim, W.-S. (2011). Utilization of Makgeolli sludge for growth of probiotic bacteria. CNU Journal of Agricultural Science, 38(3), 473–477.Google Scholar
  30. 30.
    Kim, M. S., Lee, T. J., Yoon, Y. S., Lee, I. G., & Moon, K. W. (2001). Hydrogen production from food processing wastewater and sewage sludge by anaerobic dark fermentation combined with photo-fermentation. In J. Miyake, T. Matsunaga, & A. San Pietro (Eds.), Biohydrogen II: An approach to environmentally acceptable technology (pp. 263–272). Oxford: Pergamon.CrossRefGoogle Scholar
  31. 31.
    Costa, M. C., Santos, E. S., Barros, R. J., Pires, C., & Martins, M. (2009). Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere, 75(6), 831–836.CrossRefGoogle Scholar
  32. 32.
    DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  33. 33.
    Hwang, J. W., Yang, Y. K., Hwang, J. K., Pyun, Y. R., & Kim, Y. S. (1999). Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. Journal of Bioscience and Bioengineering, 88(2), 183–188.CrossRefGoogle Scholar
  34. 34.
    Toda, K., Asakura, T., Fukaya, M., Entani, E., & Kawamura, Y. (1997). Cellulose production by acetic acid-resistant Acetobacter xylinum. Journal of Fermentation and Bioengineering, 84(3), 228–231.CrossRefGoogle Scholar
  35. 35.
    Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology, 47(2), 107–124.Google Scholar
  36. 36.
    Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., & Yoshinaga, F. (1996). A synthetic medium for bacterial cellulose production by acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology, and Biochemistry, 60(4), 575–579.CrossRefGoogle Scholar
  37. 37.
    Mikkelsen, D., Flanagan, B. M., Dykes, G. A., & Gidley, M. J. (2009). Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. Journal of Applied Microbiology, 107(2), 576–583.CrossRefGoogle Scholar
  38. 38.
    Castro, C., Zuluaga, R., Putaux, J.-L., Caro, G., Mondragon, I., & Gañán, P. (2011). Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydrate Polymers, 84(1), 96–102.CrossRefGoogle Scholar
  39. 39.
    Carreira, P., Mendes, J. A. S., Trovatti, E., Serafim, L. S., Freire, C. S. R., Silvestre, A. J. D., et al. (2011). Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology, 102(15), 7354–7360.CrossRefGoogle Scholar
  40. 40.
    Vazquez, A., Foresti, M. L., Cerrutti, P., & Galvagno, M. (2012). Bacterial cellulose from simple and low cost production media by gluconacetobacter xylinus. Journal of Polymers and the Environment, 21(2), 545–554.CrossRefGoogle Scholar
  41. 41.
    Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jo Yi Hyun
    • 1
  • Biswanath Mahanty
    • 1
  • Chang Gyun Kim
    • 1
    Email author
  1. 1.Department of Environmental EngineeringINHA UniversityIncheonRepublic of Korea

Personalised recommendations