Skip to main content
Log in

Identification of MicroRNA Genes and their mRNA Targets in Festuca arundinacea

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs of 22 nucleotides (nts) in length, which plays important roles in post-transcriptional degradation of target mRNA or inhibition of protein synthesis through binding the specific sites of target mRNA. Growing evidences have shown that miRNAs play an important role in various biological processes, including growth and development, signal transduction, apoptosis, proliferation, stress responses, maintenance of genome stability, and so on. In our study, we used bioinformatic tools to predict miRNA and the corresponding target genes of Festuca arundinacea. We used known miRNAs of other plants from miRBase to search against expressed sequence tags (EST) databases and genome survey sequences (GSS) of F. arundinacea. A total of 8 potential miRNAs were predicted. Phylogenetic analysis of the predicted miRNAs revealed that miRNA398c of F. arundinacea species was evolutionary highly conserved with Populus trichocarpa. The 8 potential miRNAs corresponding to 20 target genes were found. Most of the miRNA target genes were predicted to encode transcription factors that regulate cell growth and development, signaling, metabolism, and other biology processes. By bioinformatics methods, we can effectively predict novel miRNAs and its target genes and add information to F. arundinacea miRNA database. Moreover, it shows a path for the prediction and analysis of miRNAs to those species whose genomes are not available through bioinformatics tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang, Y., Shen, X. J., Zou, Q., Wang, S. P., Tang, S. M., & Zhang, G. Z. (2011). Biological functions of microRNAs: a review. Journal of Physiology and Biochemistry, 67(1), 129–139.

    Article  CAS  Google Scholar 

  2. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  Google Scholar 

  3. Wu, G. (2013). Plant microRNAs and development. Journal of Genetics and Genomics, 40(5), 217–230.

    Article  CAS  Google Scholar 

  4. Tang, G., Yan, J., Gu, Y., Qiao, M., Fan, R., Mao, Y., et al. (2012). Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods, 58(2), 118–125.

    Article  CAS  Google Scholar 

  5. Merchan, F., Boualem, A., Crespi, M., & Frugier, F. (2009). Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins. Genome Biology, 10, R136.

    Article  Google Scholar 

  6. Ren, G., Xie, M., Dou, Y., Zhang, S., Zhang, C., & Yu, B. (2012). Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12817–12821.

    Article  CAS  Google Scholar 

  7. Szarzynska, B., Sobkowiak, L., Pant, B. D., Balazadeh, S., Scheible, W. R., Mueller-Roeber, B., et al. (2009). Gene structures and processing of Arabidopsis thaliana HYL1-dependent pri-miRNAs. Nucleic Acids Research, 37(9), 3083–3093.

    Article  CAS  Google Scholar 

  8. Meyers, B. C., Green, P. J., & Lu, C. (2008). miRNAs in the plant genome: all things great and small. Genome Dynamics, 4, 108–118.

    Article  CAS  Google Scholar 

  9. Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16(8), 2001–2019.

    Article  CAS  Google Scholar 

  10. Martin, R. C., Liu, P. P., Goloviznina, N. A., & Nonogaki, H. (2010). microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. Journal of Experimental Botany, 61(9), 2229–2234.

    Article  CAS  Google Scholar 

  11. Sunkar, R., Li, Y. F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17(4), 196–203.

    Article  CAS  Google Scholar 

  12. Zhang, H., & Li, L. (2013). SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in Arabidopsis. Plant Journal, 74(1), 98–109.

    Article  CAS  Google Scholar 

  13. Chen, X., Zhang, Z., Liu, D., Zhang, K., Li, A., & Mao, L. (2010). SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. Journal of Integrative Plant Biology, 52(11), 946–951.

    Article  CAS  Google Scholar 

  14. Llave, C., Kasschau, K. D., Rector, M. A., & Carrington, J. C. (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14(7), 1605–1619.

    Article  CAS  Google Scholar 

  15. Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Molecular Cell, 14(6), 787–799.

    Article  CAS  Google Scholar 

  16. Berezikov, E., Cuppen, E., & Plasterk, R. H. (2006). Approaches to microRNA discovery. Nature Genetics, 38(Suppl), S2–S7.

    Article  CAS  Google Scholar 

  17. Liu, Y. X., Chang, W., Han, Y. P., Zou, Q., Guo, M. Z., & Li, W. B. (2011). In silico detection of novel microRNAs genes in soybean genome. Agricultural Sciences in China, 10(9), 1336–1345.

    Article  CAS  Google Scholar 

  18. Zuo, J., Wang, Y., Liu, H., Ma, Y., Ju, Z., Zhai, B., et al. (2011). MicroRNAs in tomato plants. Science China Life Sciences, 54(7), 599–605.

    Article  CAS  Google Scholar 

  19. Qiu, D., Pan, X., Wilson, I. W., Li, F., Liu, M., Teng, W., et al. (2009). High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 436(1–2), 37–44.

    Article  CAS  Google Scholar 

  20. Wu, Y., Du, J., Wang, X., Fang, X., Shan, W., & Liang, Z. (2012). Computational prediction and experimental verification of miRNAs in Panicum miliaceum L. Science China Life Sciences, 55(9), 807–817.

    Article  Google Scholar 

  21. Zhang, Y., Yu, M., Yu, H., Han, J., Song, C., Ma, R., et al. (2012). Computational identification of microRNAs in peach expressed sequence tags and validation of their precise sequences by miR-RACE. Molecular Biology Reports, 39(2), 1975–1987.

    Article  CAS  Google Scholar 

  22. Gebelin, V., Argout, X., Engchuan, W., Pitollat, B., Duan, C., Montoro, P., et al. (2012). Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC Plant Biology, 12, 18.

    Article  CAS  Google Scholar 

  23. Xie, F. L., Huang, S. Q., Guo, K., Xiang, A. L., Zhu, Y. Y., Nie, L., et al. (2007). Computational identification of novel microRNAs and targets in Brassica napus. FEBS Letters, 581(7), 1464–1474.

    Article  CAS  Google Scholar 

  24. Dong, Q. H., Han, J., Yu, H. P., Wang, C., Zhao, M. Z., Liu, H., et al. (2012). Computational identification of MicroRNAs in strawberry expressed sequence tags and validation of their precise sequences by miR-RACE. Journal of Heredity, 103(2), 268–277.

    Article  CAS  Google Scholar 

  25. Han, Y., Luan, F., Zhu, H., Shao, Y., Chen, A., Lu, C., et al. (2009). Computational identification of microRNAs and their targets in wheat (Triticum aestivum L.). Science in China Series C, Life Sciences, 52(11), 1091–1100.

    Article  CAS  Google Scholar 

  26. Unver, T., Namuth-Covert, D. M., & Budak, H. (2009). Review of current methodological approaches for characterizing microRNAs in plants. International Journal of Plant Genomics, 2009(2009), 262463.

    Google Scholar 

  27. Wang, Z. Y., Scott, M., Bell, J., Hopkins, A., & Lehmann, D. (2003). Field performance of transgenic tall fescue (Festuca arundinacea Schreb.) plants and their progenies. Theoretical and Applied Genetics, 107(3), 406–412.

    Article  CAS  Google Scholar 

  28. Tennant, T., & Wu, L. (2000). Effects of water stress on selenium accumulation in tall fescue (Festuca arundinacea Schreb) from a selenium-contaminated soil. Archives of Environmental Contamination and Toxicology, 38(1), 32–39.

    Article  CAS  Google Scholar 

  29. Ge, Y., & Wang, Z. Y. (2006). Tall Fescue (Festuca arundinacea Schreb.). Methods in Molecular Biology, 344, 75–81.

    CAS  Google Scholar 

  30. Unver, T., Bakar, M., Shearman, R. C., & Budak, H. (2010). Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Molecular Genetics and Genomics, 283(4), 397–413.

    Article  CAS  Google Scholar 

  31. Altschul, S., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  32. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.

    Article  Google Scholar 

  33. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.

    Article  CAS  Google Scholar 

  34. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030–11035.

    Article  CAS  Google Scholar 

  35. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  Google Scholar 

  36. Zhang, B., Pan, X., Cannon, C. H., Cobb, G. P., & Anderson, T. A. (2006). Conservation and divergence of plant microRNA genes. Plant Journal, 46(2), 243–259.

    Article  CAS  Google Scholar 

  37. Zhang, B. H., Pan, X. P., Cox, S. B., Cobb, G. P., & Anderson, T. A. (2006). Evidence that miRNAs are different from other RNAs. Cellular and Molecular Life Sciences, 63(2), 246–254.

    Article  CAS  Google Scholar 

  38. Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2006). Plant microRNA: a small regulatory molecule with big impact. Developmental Biology, 289(1), 3–16.

    Article  CAS  Google Scholar 

  39. Munoz-Merida, A., Perkins, J. R., Viguera, E., Thode, G., Bejarano, E. R., & Perez-Pulido, A. J. (2012). Semirna: searching for plant miRNAs using target sequences. OMICS, 16(4), 168–177.

    Article  CAS  Google Scholar 

  40. Lai, X., Schmitz, U., Gupta, S. K., Bhattacharya, A., Kunz, M., Wolkenhauer, O., et al. (2012). Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs. Nucleic Acids Research, 40(18), 8818–8834.

    Article  CAS  Google Scholar 

  41. Fujita, S., & Iba, H. (2008). Putative promoter regions of miRNA genes involved in evolutionarily conserved regulatory systems among vertebrates. Bioinformatics, 24(3), 303–308.

    Article  CAS  Google Scholar 

  42. Searle, I., & Coupland, G. (2004). Induction of flowering by seasonal changes in photoperiod. EMBO Journal, 23(6), 1217–1222.

    Article  CAS  Google Scholar 

  43. Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland, G., et al. (2006). The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant Journal, 46(3), 462–476.

    Article  CAS  Google Scholar 

  44. Voinnet, O. (2005). Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews Genetics, 6(3), 206–220.

    Article  CAS  Google Scholar 

  45. Yang, T. W., Xue, L. G., & An, L. Z. (2007). Functional diversity of miRNA in plants. Plant Science, 172(3), 423–432.

    Article  CAS  Google Scholar 

  46. Bazzini, A. A., Hopp, H. E., Beachy, R. N., & Asurmendi, S. (2007). Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proceedings of the National Academy of Sciences of the United States of America, 104(29), 12157–12162.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31302013, 61370010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Bin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X.H., Zhao, L.P., Zou, Q. et al. Identification of MicroRNA Genes and their mRNA Targets in Festuca arundinacea . Appl Biochem Biotechnol 172, 3875–3887 (2014). https://doi.org/10.1007/s12010-014-0805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0805-6

Keywords

Navigation